Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exploiting chemically selective weakness in solids as a route to new porous materials

Abstract

Weakness in a material, especially when challenged by chemical, mechanical or physical stimuli, is often viewed as something extremely negative. There are countless examples in which interesting-looking materials have been dismissed as being too unstable for an application. But instability with respect to a stimulus is not always a negative point. In this Perspective we highlight situations where weakness in a material can be used as a synthetic tool to prepare materials that, at present, are difficult or even impossible to prepare using traditional synthetic approaches. To emphasize the concept, we will draw upon examples in the field of nanoporous materials, concentrating on metal–organic frameworks and zeolites, but the general concepts are likely to be applicable across a wide range of materials chemistry. In zeolite chemistry, there is a particular problem with accessing hypothetical structures that this approach may solve.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy–density correlations for zeolites and ZIFs.
Figure 2: Examples of exploiting weakness in metal–organic frameworks as a route to new materials and properties.
Figure 3: The ADOR process leads to families of zeolites with continuously tunable porosity.
Figure 4: Preparing currently inaccessible materials.

Similar content being viewed by others

References

  1. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Primo, A. & Garcia, H. Zeolites as catalysts in oil refining. Chem. Soc. Rev. 43, 7548–7561 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Ferey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  5. Pophale, R., Cheeseman, P. A. & Deem, M. W. A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 13, 12407–12412 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Earl, D. J. & Deem, M. W. Toward a database of hypothetical zeolite structures. Indust. Eng. Chem. Res. 45, 5449–5454 (2006).

    Article  CAS  Google Scholar 

  7. Blatov, V. A., Ilyushin, G. D. & Proserpio, D. M. The zeolite conundrum: why are there so many hypothetical zeolites and so few observed? A possible answer from the zeolite-type frameworks perceived as packings of tiles. Chem. Mater. 25, 412–424 (2013).

    Article  CAS  Google Scholar 

  8. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Akporiaye, D. E. & Price, G. D. Relative stability of zeolite frameworks from calculated energetics of known and theoretical structures. Zeolites 9, 321–328 (1989).

    Article  CAS  Google Scholar 

  10. Henson, N. J., Cheetham, A. K. & Gale, J. D. Theoretical calculations on silica frameworks and their correlation with experiment. Chem. Mater. 6, 1647–1650 (1994).

    Article  CAS  Google Scholar 

  11. Henson, N. J., Cheetham, A. K. & Gale, J. D. Computational studies of aluminum phosphate polymorphs. Chem. Mater. 8, 664–670 (1996).

    Article  CAS  Google Scholar 

  12. Hughes, J. T., Bennett, T. D., Cheetham, A. K. & Navrotsky, A. Thermochemistry of zeolitic imidazolate frameworks of varying porosity. J. Am. Chem. Soc. 135, 598–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Majda, D. et al. Hypothetical zeolitic frameworks: In search of potential heterogeneous catalysts. J. Phys. Chem. C 112, 1040–1047 (2008).

    Article  CAS  Google Scholar 

  14. Li, Y., Yu, J. & Xu, R. R. Criteria for zeolite frameworks realizable for target synthesis. Angew. Chem. Int. Ed. 52, 1673–1677 (2013).

    Article  CAS  Google Scholar 

  15. Li, X. & Deem, M. W. Why zeolites have so few seven-membered rings. J. Phys. Chem. C. 118, 15835–15839 (2014).

    Article  CAS  Google Scholar 

  16. Hartmann, M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angew. Chem. Int. Ed. 43, 5880–5882 (2004).

    Article  CAS  Google Scholar 

  17. Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).

    Article  CAS  Google Scholar 

  18. Farha, O. K. et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944–948 (2010).

    Article  CAS  Google Scholar 

  19. Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    Article  CAS  Google Scholar 

  20. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  21. Horcajada, P. et al. Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII (OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x ·H2Oy . J. Am. Chem. Soc. 124, 13519–13526 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Low, J. J. et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J. Am. Chem. Soc. 131, 15834–15842 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Colombo, V. et al. High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chem. Sci. 2, 1311–1319 (2011).

    Article  CAS  Google Scholar 

  27. Cohen, S. M. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970–1000 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Z. & Cohen, S. M. Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 38, 1315–1329 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Karagiaridi, O., Bury, W., Mondloch, J. E., Hupp, J. T. & Farha, O. K. Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks. Angew. Chem. Int. Ed. 53, 4530–4540 (2014).

    Article  CAS  Google Scholar 

  30. Kahr, J., Morris, R. E. & Wright, P. A. Post-synthetic incorporation of nickel into CPO-27(Mg) to give materials with enhanced permanent porosity. Cryst. Eng. Comm 15, 9779–9786 (2013).

    Article  CAS  Google Scholar 

  31. Kim, Y. et al. Metal-ion metathesis in metal-organic frameworks: a synthetic route to new metal–organic frameworks. Chem. Eur. J. 18, 16642–16648 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Vermootle, F. et al. Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: The unique case of UiO-66(Zr) J. Am. Chem. Soc. 135, 11465–11468 (2013).

    Article  CAS  Google Scholar 

  33. Polozij, M., Rubes, M., Cejka, J. & Nachtigall, P. Catalysis by dynamically formed defects in a metal–organic framework structure: Knoevenagel reaction catalyzed by copper benzene-1,3,5-tricarboxylate. ChemCatChem 6, 2821–2824 (2014).

    Article  CAS  Google Scholar 

  34. Lapidus, S. H., Halder, G. J., Chupas, P. J. & Chapman, K. W. Exploiting high pressures to generate porosity, polymorphism, and lattice expansion in the nonporous molecular framework Zn(CN)2 . J. Am. Chem. Soc. 135, 7621–7628 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chem. 1, 289–294 (2009).

    Article  CAS  Google Scholar 

  36. Allan, P. K., Xiao, B., Teat, S. J., Knight, J. W. & Morris, R. E. In situ single-crystal diffraction studies of the structural transition of metal–organic framework copper 5-sulfoisophthalate, Cu-SIP-3. J. Am. Chem. Soc. 132, 3605–3611 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Allan, P. K. et al. Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal-organic framework. Chem. Sci. 3, 2559–2564 (2012).

    Article  CAS  Google Scholar 

  38. Tian, Y. et al. Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer. Dalton Trans. 43, 1519–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Sarma, D. & Natarajan, S. Usefulness of in situ single crystal to single crystal transformation (SCSC) studies in understanding the temperature-dependent dimensionality cross-over and structural reorganization in copper-containing metal–organic frameworks (MOFs). Cryst. Growth Des. 11, 5415–5423 (2011).

    Article  CAS  Google Scholar 

  40. Sato, H. et al. Self-accelerating CO sorption in a soft nanoporous crystal. Science 343, 167–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Mohideen, M. I. H. et al. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nature Chem. 3, 304–310 (2011).

    Article  CAS  Google Scholar 

  42. Li, Y. & Yu, J. New stories of zeolite structures: Their descriptions, determinations, predictions, and evaluations. Chem. Rev. 114, 7268–7316 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Agostini, G. et al. In situ XAS and XRPD parametric Rietveld refinement to understand dealumination of Y zeolite catalyst. J. Am. Chem. Soc. 132, 667–678 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Malola, S., Svelle, S., Bleken, F. L. & Swang, O. Detailed reaction paths for zeolite dealumination and desilication from density functional calculations. Angew. Chem. Int. Ed. 51, 652–655 (2012).

    Article  CAS  Google Scholar 

  45. Zones, S. I. et al. Studies of aluminum reinsertion into borosilicate zeolites with intersecting channels of 10- and 12-ring channel systems. J. Am. Chem. Soc. 136, 1462–1471 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Baerlocher, C., Weber, T., McCusker, L. B., Palatinus, L. & Zones, S. I. Unraveling the perplexing structure of the zeolite SSZ-57. Science 333, 1134–1137 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Zones, S. I., Chen, C. Y., Benin, A. & Hwang, S. J. Opportunities for selective catalysis within discrete portions of zeolites: The case for SSZ-57LP. J. Catal. 308, 213–225 (2013).

    Article  CAS  Google Scholar 

  48. Roth, W. J., Nachtigall, P., Morris, R. E. & Cejka, J. Two-dimensional zeolites: current status and perspectives. Chem. Rev. 114, 4807–4837 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Gil, B. et al. High acidity unilamellar zeolite MCM-56 and its pillared and delaminated derivatives. Dalton Trans. 43, 10501–10511 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Roth, W. J., Gil, B. & Marszalek, B. Comprehensive system integrating 3D and 2D zeolite structures with recent new types of layered geometries. Catal. Today 227, 9–14, (2014).

    Article  CAS  Google Scholar 

  51. Ouyang, X. et al. Novel surfactant-free route to delaminated all-silica and titanosilicate zeolites derived from a layered borosilicate MWW precursor. Dalton Trans. 43, 10417–10429 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Ouyang, X. et al. Single-step delamination of a MWW borosilicate layered zeolite precursor under mild conditions without surfactant and sonication. J. Am. Chem. Soc. 136, 1449–1461 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Corma, A., Rey, F., Valencia, S., Jorda, J. L. & Rius, J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Mater. 2, 493–497 (2003).

    Article  CAS  Google Scholar 

  54. Jiang, J., Yu, J. & Corma, A. Extra-large-pore zeolites: Bridging the gap between micro and mesoporous structures. Angew. Chem. Int. Ed. 49, 3120–3145 (2010).

    Article  CAS  Google Scholar 

  55. Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J. & Corma, A. The synthesis of an extra-large-pore zeolite with double three-ring building units and a low framework density. Angew. Chem. Int. Ed. 49, 4986–4988 (2010).

    Article  CAS  Google Scholar 

  56. Brunner, G. O. & Meier, W. M. Framework density distribution of zeolite-type tetrahedral nets. Nature 337, 146–147 (1989).

    Article  CAS  Google Scholar 

  57. Sun, J. et al. The ITQ-37 mesoporous chiral zeolite. Nature 458, 1154–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Kamakoti, P. & Barckholtz, T. A. Role of germanium in the formation of double four rings in zeolites. J. Phys. Chem. C 111, 3575–3583 (2007).

    Article  CAS  Google Scholar 

  59. Sastre, G., Pulido, A. & Corma, A. An attempt to predict and rationalize relative stabilities and preferential germanium location in Si/Ge zeolites. Micropor. Mesopor. Mater. 82, 159–163 (2005).

    Article  CAS  Google Scholar 

  60. Burel, L., Kasian, N. & Tuel, A. Quasi all-silica zeolite obtained by isomorphous degermanation of an as-made germanium-containing precursor. Angew. Chem. Int. Ed. 53, 1360–1363 (2014).

    Article  CAS  Google Scholar 

  61. Liu, X., Kasian, N. & Tuel, A. New insights into the degermanation process of ITQ-17 zeolites. Micropor. Mesopor. Mater. 190, 171–180 (2014).

    Article  CAS  Google Scholar 

  62. Liu, X., Ravon, U., Bosselet, F., Bergeret, G. & Tuel, A. Probing Ge distribution in zeolite frameworks by post-synthesis introduction of fluoride in as-made materials. Chem. Mater. 24, 3016–3022 (2012).

    Article  CAS  Google Scholar 

  63. Liu, X., Ravon, U. & Tuel, A. Effect of HF concentration on the composition and distribution of Ge species in the framework of ITQ-13 and ITQ-17 zeolites. Micropor. Mesopor. Mater. 170, 194–199 (2013).

    Article  CAS  Google Scholar 

  64. Verheyen, E. et al. Design of zeolite by inverse sigma transformation. Nature Mater. 11, 1059–1064 (2012).

    Article  CAS  Google Scholar 

  65. Paillaud, J. L., Harbuzaru, B., Patarin, J. & Bats, N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings. Science 304, 990–992 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Corma, A., Diaz-Cabanas, M. J., Rey, F., Nicolooulas, S. & Boulahya, K. ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., 1356–1357 (2004).

  67. Roth, W. J. et al. Postsynthesis transformation of three-dimensional framework into a lamellar zeolite with modifiable architecture. J. Am. Chem. Soc. 133, 6130–6133 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Roth, W. J. et al. A family of zeolites with controlled pore size prepared using a top-down method. Nature Chem. 5, 628–633 (2013).

    Article  CAS  Google Scholar 

  69. Chlubna, P. et al. 3D to 2D routes to ultrathin and expanded zeolitic materials. Chem. Mater. 25, 542–547 (2013).

    Article  CAS  Google Scholar 

  70. Wheatley, P. et al. Zeolites with continuously tuneable porosity. Angew. Chem. Int. Ed. 53, 13210–13214 (2014).

    Article  CAS  Google Scholar 

  71. Chlubna-Eliasova, P. et al. The assembly–disassembly–organization–reassembly mechanism for 3D–2D–3D transformation of germanosilicate IWW zeolite. Angew. Chem. Int. Ed. 53, 7048–7052 (2014).

    Article  CAS  Google Scholar 

  72. Shamzy, M. et al. Germanosilicate precursors of ADORable zeolites obtained by disassembly of ITH, ITR, and IWR zeolites Chem. Mater., 26, 5789–5798 (2014).

    Article  CAS  Google Scholar 

  73. Goa, Y. et al. Controlled detitanation of ETS-10 materials through the post-synthetic treatment and their applications to the liquid-phase epoxidation of alkenes Micropor. Mesopor. Mater. 70, 93–101 (2004).

    Article  CAS  Google Scholar 

  74. Bordiga, S. et al. Reactivity of Ti(IV) species hosted in TS-1 towards H2O2-H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: A review and new highlights. Phys. Chem. Chem. Phys. 9, 4854–4878 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Freyhardt, C. C. et al. VPI-8: A high-silica molecular sieve with a novel 'pinwheel' building unit and its implications for the synthesis of extra-large pore molecular sieves J. Am. Chem. Soc. 118, 7299–7310 (1996).

    Article  CAS  Google Scholar 

  76. Trachta, M., Bludský, O., Cejka, J., Morris, R. E. & Nachtigall, P. From double-four-ring germanosilicates to new zeolites: In silico investigation. ChemPhysChem. 15, 2972–2976 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Trachta, M., Bludský, O. & Nachtigall, P. The ADOR synthesis of new zeolites: In silico investigation. Catal. Today 243, 32–38 (2015).

    Article  CAS  Google Scholar 

  78. Carter, V. J. et al. AlMePO-beta: inclusion and thermal removal of structure directing agent and the topotactic reconstructive transformation to its polymorph AlMePO-alpha. J. Mater. Chem 7, 2287–2292 (1997).

    Article  CAS  Google Scholar 

  79. Wragg, D. S., Hix, G. B. & Morris, R. E. Azamacrocycle-containing gallium phosphates: A new class of inorganic–organic hybrid material. J. Am. Chem. Soc. 120, 6822–6823 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.E.M. thanks the Royal Society and the EPSRC (grants EP/L014475/1, EP/K025112/1 and EP/K005499/1) for funding work in this area. J.Č. acknowledges the Czech Science Foundation for the project of the Centre of Excellence (P106/12/G015) and the European Union Seventh Framework Programme (FP7/ 2007–2013) under grant agreement 604307. We thank P. Wheatley, P. Chlubna-Eliasova, W. Roth and P. Nachtigall for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell E. Morris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, R., Čejka, J. Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chem 7, 381–388 (2015). https://doi.org/10.1038/nchem.2222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing