Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA brick crystals with prescribed depths

Abstract

The ability to assemble functional materials with precise spatial arrangements is important for applications ranging from protein crystallography to photovoltaics. Here, we describe a general framework for constructing two-dimensional crystals with prescribed depths and sophisticated three-dimensional features. The crystals are self-assembled from single-stranded DNA components called DNA bricks. We demonstrate the experimental construction of DNA brick crystals that can grow to micrometre size in their lateral dimensions with precisely controlled depths up to 80 nm. They can be designed to pack DNA helices at angles parallel or perpendicular to the plane of the crystal and to display user-specified sophisticated three-dimensional nanoscale features, such as continuous or discontinuous cavities and channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of DNA brick crystals.
Figure 2: One-dimensional DNA crystals.
Figure 3: Two-dimensional multilayer ZX-crystals.
Figure 4: Two-dimensional DNA forest XY-crystals.
Figure 5: Isothermal assembly of brick crystals.
Figure 6: Gold nanoparticles patterned using DNA brick crystals.

Similar content being viewed by others

References

  1. Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Qi, M. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P. & Giessen, H. Three-dimensional plasmon rulers. Science 332, 1407–1410 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Tang, C. B., Lennon, E. M., Fredrickson, G. H., Kramer, E. J. & Hawker, C. J. Evolution of block copolymer lithography to highly ordered square arrays. Science 322, 429–432 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Tavakkoli, K. G. A. et al. Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 336, 1294–1298 (2012).

    Article  CAS  Google Scholar 

  6. Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31–37 (2008).

    Article  CAS  Google Scholar 

  7. Edward, E. W., Montague, M. F., Solak, H. H., Hawker, C. J. & Nealey, P. F. Precise control over molecular dimensions of block-copolymer domains using the interfacial energy of chemically nanopatterned substrates. Adv. Mater. 16, 1315–1319 (2004).

    Article  Google Scholar 

  8. Kim, S. O. et al. Novel complex nanostructure from directed assembly of block copolymers on incommensurate surface patterns. Adv. Mater. 19, 3271–3275 (2007).

    Article  CAS  Google Scholar 

  9. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, J. & Seeman, N. C. The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  PubMed  Google Scholar 

  11. Fu, T. J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chem. 3, 620–627 (2011).

    Article  CAS  Google Scholar 

  19. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Sobczak, J-P. J., Martin, T. G., Gerling, T. & Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 338, 1458–1461 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Han, D. et al. DNA gridiron nanostructures based on four-arm junctions. Science 339, 1412–1415 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Wei, B. et al. Design space for complex DNA structures. J. Am. Chem. Soc. 135, 18080–18088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344, 65–69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, D., Wang, M., Deng, Z., Walulu, R. & Mao, C. Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Rothemund, P. W. K., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, 2041–2053 (2004).

    Article  CAS  Google Scholar 

  30. He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Malo, J. et al. Engineering a 2D protein–DNA crystal. Angew. Chem. Int. Ed. 44, 3057–3061 (2005).

    Article  CAS  Google Scholar 

  32. Ke, Y., Liu, Y., Zhang, J. P. & Yan, H. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. J. Am. Chem. Soc. 128, 4414–4421 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Yin, P. et al. Programming DNA tube circumferences. Science 321, 824–826 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Zheng, J. P. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, W., Zhong, H. & Seeman, N. C. Crystalline two dimensional DNA origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2011).

    Article  CAS  Google Scholar 

  37. Majumder, U., Rangnekar, A., Gothelf, K. V., Reif, J. H. & LaBean, T. H. Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. J. Am. Chem. Soc. 133, 3843–3845 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, T., Schiffels, D., Cuesta, S. M., Fygenson, D. K. & Seeman, N. C. Design and characterization of 1D nanotubes and 2D periodic arrays self-assembled from DNA multi-helix bundles. J. Am. Chem. Soc. 134, 1606–1616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Park, S. et al. Macroscopic 10-terabit per square-inch arrays from block copolymers with lateral order. Science 323, 1030–1033 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aldaye, F. A. & Sleiman, H. F. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed. 45, 2204–2209 (2006).

    Article  CAS  Google Scholar 

  44. Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Selmi, D. N. et al. DNA-templated protein arrays for single-molecule imaging. Nano Lett. 11, 657–660 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Dang, X. N. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotech. 6, 377–384 (2011).

    Article  CAS  Google Scholar 

  47. Sharma, J. et al. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J. Am. Chem. Soc. 130, 7820–7821 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by ONR Young Investigator Program Award N000141110914, ONR Grants N000141010827, N000141410610 and N000141310593, ARO Grant W911NF1210238, NSF CAREER Award CCF1054898, NSF Expedition in Computing Award CCF1317291, NSF Grants CCF1162459, CMMI1333215, CMMI1334109 and CMMI1344915, NIH Director's New Innovator Award 1DP2OD007292 and a Wyss Institute Faculty Startup Fund to P.Y., and by a Wyss Institute Faculty Grant, ARO MURI grant W911NF1210420, ONR Grants N000014091118 and N000141010241 and NIH Director's New Innovator Award 1DP2OD004641 to W.M.S. L.L.O. is supported by an NSF Graduate Research Fellowship. J.S. acknowledges AUFF funding from Aarhus University and the Niels Bohr Foundation from The Royal Danish Academy of Science. M.D. acknowledges financial support from the Danish National Research Foundation and the Villum Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.K., L.L.O. and W.S. made equal contributions to this work. Y.K. conceived the project, designed and performed the experiments, analysed the data and wrote the paper. L.L.O. and W.S. designed and performed the experiments, analysed the data and wrote the paper. J.S. and M.D. performed the cryo-EM and AFM experiments, analysed the data and wrote the paper. W.M.S discussed the results and wrote the paper. P.Y. conceived, designed and supervised the study, interpreted the data and wrote the paper.

Corresponding authors

Correspondence to Yonggang Ke or Peng Yin.

Ethics declarations

Competing interests

A provisional US patent application based on the work described in this manuscript has been filed.

Supplementary information

Supplementary information

Supplementary information (PDF 29824 kb)

Supplementary information

Strand sequences (PDF 2911 kb)

Supplementary information

Strand sequences (XLS 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, Y., Ong, L., Sun, W. et al. DNA brick crystals with prescribed depths. Nature Chem 6, 994–1002 (2014). https://doi.org/10.1038/nchem.2083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing