Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy

Abstract

Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Condensation of aldehyde A with α,ω-diamines.
Figure 2: STM images of self-assembled 2D nanopatterns.
Figure 3: STM representative images of in situ condensation/bistransimination processes.
Figure 4: STM representative images of the A2B12 transition into A2B6.

Similar content being viewed by others

References

  1. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry—a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Lehn, J-M. Supramolecular Chemistry: Concepts and Perspectives (Wiley, 1995).

    Book  Google Scholar 

  3. Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. P. H. J. About supramolecular assemblies of pi-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  5. Jin, Y., Yu, C., Denman, R. J. & Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Lehn, J-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).

    Article  CAS  Google Scholar 

  7. Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, B. L. Dynamic Combinatorial Chemistry in Drug Discovery, Bioorganic Chemistry, and Materials Science (Wiley, 2009).

    Book  Google Scholar 

  9. Lehn, J-M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Lehn, J-M. in Constitutional Dynamic Chemistry (ed. Barboiu, M.) 1–32 (Topics in Current Chemistry 332, Springer, 2012).

    Google Scholar 

  11. Fyfe, M. C. T. & Stoddart, J. F. Synthetic supramolecular chemistry. Acc. Chem. Res. 30, 393–401 (1997).

    Article  CAS  Google Scholar 

  12. Black, S. P., Sanders, J. K. M. & Stefankiewicz, A. R. Disulfide exchange: exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev. 43, 1861–1872 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Fuchs, B., Nelson, A., Star, A., Stoddart, J. F. & Vidal, S. B. Amplification of dynamic chiral crown ether complexes during cyclic acetal formation. Angew. Chem. Int. Ed. 42, 4220–4224 (2003).

    Article  CAS  Google Scholar 

  14. Cacciapaglia, R., Di Stefano, S. & Mandolini, L. Metathesis reaction of formaldehyde acetals: an easy entry into the dynamic covalent chemistry of cyclophane formation. J. Am. Chem. Soc. 127, 13666–13671 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Kaiser, G. & Sanders, J. K. M. Synthesis under reversible conditions of cyclic porphyrin dimers using palladium-catalysed allyl transesterification. Chem. Commun. 1763–1764 (2000).

  16. Cordes, E. H. & Jencks, W. P. On the mechanism of Schiff base formation and hydrolysis. J. Am. Chem. Soc. 84, 832–837 (1962).

    Article  CAS  Google Scholar 

  17. Layer, R. W. The chemistry of imines. Chem. Rev. 63, 489–510 (1963).

    Article  CAS  Google Scholar 

  18. Dayagi, S. & Degani, Y. Methods of Formation of the Carbon–Nitrogen Double Bond 64–83 (Interscience, 1970).

    Google Scholar 

  19. Tauk, L., Schroder, A. P., Decher, G. & Giuseppone, N. Hierarchical functional gradients of pH-responsive self-assembled monolayers using dynamic covalent chemistry on surfaces. Nature Chem. 1, 649–656 (2009).

    Article  CAS  Google Scholar 

  20. Bonnett, R. in Carbon–Nitrogen Double Bonds (1970) (ed. Patai, S.) 597–662 (Wiley, 2010).

    Google Scholar 

  21. Belowich, M. E. & Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 41, 2003–2024 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Korich, A. L. & Iovine, P. M. Boroxine chemistry and applications: a perspective. Dalton Trans. 39, 1423–1431 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ciaccia, M., Cacciapaglia, R., Mencarelli, P., Mandolini, L. & Di Stefano, S. Fast transimination in organic solvents in the absence of proton and metal catalysts. A key to imine metathesis catalyzed by primary amines under mild conditions. Chem. Sci. 4, 2253–2261 (2013).

    Article  CAS  Google Scholar 

  25. Rue, N. M., Sun, J. L. & Warmuth, R. Polyimine container molecules and nanocapsules. Isr. J. Chem. 51, 743–768 (2011).

    Article  CAS  Google Scholar 

  26. Kovaříček, P. & Lehn, J-M. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes. J. Am. Chem. Soc. 134, 9446–9455 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Ramström, O. & Lehn J-M. Drug discovery by dynamic combinatorial libraries. Nature Rev. Drug. Discov. 1, 26–36 (2002).

    Article  Google Scholar 

  28. Zhao, D. H. & Moore, J. S. Reversible polymerization driven by folding. J. Am. Chem. Soc. 124, 9996–9997 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Giuseppone, N. Toward self-constructing materials: a systems chemistry approach. Acc. Chem. Res. 45, 2178–2188 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008).

    Article  CAS  Google Scholar 

  31. Hossain, M. Z. et al. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nature Chem. 4, 305–309 (2012).

    Article  CAS  Google Scholar 

  32. Saywell, A., Schwarz, J., Hecht, S. & Grill, L. Polymerization on stepped surfaces: alignment of polymers and identification of catalytic sites. Angew. Chem. Int. Ed. 51, 5096–5100 (2012).

    Article  CAS  Google Scholar 

  33. Di Giovannantonio, M. et al. Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined Ullmann polymerization. ACS Nano 7, 8190–8198 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    Article  Google Scholar 

  35. Rabe, J. P. & Buchholz, S. Commensurability and mobility in 2-dimensional molecular-patterns on graphite. Science 253, 424–427 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. De Feyter, S. & De Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 32, 139–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Jackson, A. M., Myerson, J. W. & Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nature Mater. 3, 330–336 (2004).

    Article  CAS  Google Scholar 

  38. MacLeod, J. M., Ivasenko, O., Perepichka, D. F. & Rosei, F. Stabilization of exotic minority phases in a multicomponent self-assembled molecular network. Nanotechnology 18, 424031–424040 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Ciesielski, A., Schaeffer, G., Petitjean, A., Lehn, J-M. & Samorì, P. STM insight into hydrogen-bonded bicomponent 1D supramolecular polymers with controlled geometries at the liquid–solid interface. Angew. Chem. Int. Ed. 48, 2039–2043 (2009).

    Article  CAS  Google Scholar 

  40. Ciesielski, A., Palma, C-A., Bonini, M. & Samorì, P. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid–liquid interfaces. Adv. Mater. 22, 3506–3520 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Ciesielski, A., Lena, S., Masiero, S., Spada, G. P. & Samorì, P. Dynamers at the solid–liquid interface: controlling the reversible assembly/reassembly process between two highly ordered supramolecular guanine motifs. Angew. Chem. Int. Ed. 49, 1963–1966 (2010).

    Article  CAS  Google Scholar 

  42. Ciesielski, A. & Samorì, P. Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces. Nanoscale 3, 1397–1410 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  44. Hulsken, B. et al. Real-time single-molecule imaging of oxidation catalysis at a liquid–solid interface. Nature Nanotech. 2, 285–289 (2007).

    Article  CAS  Google Scholar 

  45. Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Mielke, J. et al. Molecules with multiple switching units on a Au(111) surface: self-organization and single-molecule manipulation. J. Phys. Condens. Matter 24, 394013 (2012).

    Article  PubMed  CAS  Google Scholar 

  47. den Boer, D. et al. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nature Chem. 5, 621–627 (2013).

    Article  CAS  Google Scholar 

  48. Ghijsens, E, et al. A tale of tails: alkyl chain directed formation of 2D porous networks reveals odd–even effects and unexpected bicomponent phase behavior. ACS Nano 7, 8031–8042 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Dienstmaier, J. F. et al. Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 5, 9737–9745 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Hu, F. Y. et al. In situ STM investigation of two-dimensional chiral assemblies through Schiff-base condensation at a liquid/solid interface. ACS Appl. Mater. Interfaces 5, 1583–1587 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, X. Y. et al. Structural motif modulation in 2D supramolecular assemblies of molecular dipolar unit tethered by alkylene spacer. J. Phys. Chem. C 117, 16392–16396 (2013).

    Article  CAS  Google Scholar 

  53. Guan, C. Z., Wang, D. & Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

    Article  CAS  Google Scholar 

  54. Weigelt, S. et al. Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 46, 9227–9230 (2007).

    Article  CAS  Google Scholar 

  55. Weigelt, S. et al. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 47, 4406–4410 (2008).

    Article  CAS  Google Scholar 

  56. Tanoue, R. et al. Thermodynamically controlled self-assembly of covalent nanoarchitectures in aqueous solution. ACS Nano 5, 3923–3929 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Piot, L., Bonifazi, D. & Samorì, P. Organic reactivity in confined spaces under scanning tunneling microscopy control: tailoring the nanoscale world. Adv. Func. Mater. 17, 3689–3693 (2007).

    Article  CAS  Google Scholar 

  58. Stabel, A., Heinz, R., De Schryver, F. C. & Rabe, J. P. Ostwald ripening of 2-dimensional crystals at the solid–liquid interface. J. Phys. Chem. 99, 505–507 (1995).

    Article  Google Scholar 

  59. Samorí, P., Müllen, K. & Rabe, H. P. Molecular-scale tracking of the self-healing of polycrystalline monolayers at the solid–liquid interface. Adv. Mater. 16, 1761–1765 (2004).

    Article  CAS  Google Scholar 

  60. Samorí, P., Severin, N., Müllen, K. & Rabe, J. P. Macromolecular fractionation of rod-like polymers at atomically flat solid–liquid interfaces. Adv. Mater. 12, 579–582 (2000).

    Article  Google Scholar 

  61. Cheeseman, J. D., Corbett, A. D., Gleason, J. L. & Kazlauskas, R. J. Receptor-assisted combinatorial chemistry: thermodynamics and kinetics in drug discovery. Chem. Eur. J. 11, 1708–1716 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Belenguer, A. M., Friscic, T., Day, G. M. & Sanders, J. K. M. Solid-state dynamic combinatorial chemistry: reversibility and thermodynamic product selection in covalent mechanosynthesis. Chem. Sci. 2, 696–700 (2011).

    Article  CAS  Google Scholar 

  63. Bonini, M. et al. Competitive physisorption among alkyl-substituted pi-conjugated oligomers at the solid–liquid interface: towards prediction of self-assembly at surfaces from a multicomponent solution. Small 5, 1521–1526 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Baxter, P. N. W., Lehn, J-M. & Rissanen, K. Generation of an equilibrating collection of circular inorganic copper(I) architectures and solid-state stabilisation of the dicopperhelicate component. Chem. Commun. 1323–1324 (1997).

Download references

Acknowledgements

We thank M. Cecchini for enlightening discussions. P.K. acknowledges the Université de Strasbourg for a doctoral fellowship. This work was supported by the European Community through the European Research Council projects SUPRAFUNCTION (GA-257305) and SUPRADAPT (GA-290585), the Agence Nationale de la Recherche through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC) and the International Center for Frontier Research in Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

A.C., P.S. and J-M.L. conceived the experiments and designed the study. P.K. participated in the planning of the study and carried out the synthesis and characterization in solution (HPLC, and NMR and mass spectroscopy). M.E.G. and S.H. performed the STM experiments. M.E.G., A.C. and P.S. interpreted the STM data. J-M.L. and P.K. interpreted the chemical data. All authors discussed the results and contributed to the interpretation of data. A.C., P.S. and J-M.L. co-wrote the paper. All authors contributed to editing the manuscript.

Corresponding authors

Correspondence to Jean-Marie Lehn or Paolo Samorì.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3896 kb)

Supplementary information

Supplementary information (XLSX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciesielski, A., El Garah, M., Haar, S. et al. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy. Nature Chem 6, 1017–1023 (2014). https://doi.org/10.1038/nchem.2057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing