Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks

Abstract

Post-synthetic metallation is employed strategically to imbue metal–organic frameworks (MOFs) with enhanced performance characteristics. However, obtaining precise structural information for metal-centred reactions that take place within the pores of these materials has remained an elusive goal, because of issues with high symmetry in certain MOFs, lower initial crystallinity for some chemically robust MOFs, and the reduction in crystallinity that can result from carrying out post-synthetic reactions on parent crystals. Here, we report a new three-dimensional MOF possessing pore cavities that are lined with vacant di-pyrazole groups poised for post-synthetic metallation. These metallations occur quantitatively without appreciable loss of crystallinity, thereby enabling examination of the products by single-crystal X-ray diffraction. To illustrate the potential of this platform to garner fundamental insight into metal-catalysed reactions in porous solids we use single-crystal X-ray diffraction studies to structurally elucidate the reaction products of consecutive oxidative addition and methyl migration steps that occur within the pores of the Rh-metallated MOF, 1·[Rh(CO)2][Rh(CO)2Cl2].

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and structural representations of MOF 1.
Figure 2: Representations of the dramatic structural flexibility displayed by 1.
Figure 3: Data from the N2 gas adsorption isotherm experiments performed at 77 K for 1-des and 1·[CoCl2].
Figure 4: Structural details of the reversible SC–SC Oh to Td transformation for 1·[Co(H2O)4]Cl2 that can be realized by heating or immersion in acetonitrile.
Figure 5: Reaction scheme showing X-ray crystallographic snapshots along the a axis of 1 treated with [Rh(CO)2Cl]2 and subsequent oxidative reactions.

Similar content being viewed by others

References

  1. Ooi, L. Principles of X-ray Crystallography (Oxford Univ. Press, 2010).

    Google Scholar 

  2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Inokuma, Y. et al. X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495, 461–466 (2013); ibid. Corrigendum. Nature 501, 262 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Legrand, Y-M., van der Lee, A. & Barboiu, M. Single-crystal X-ray structure of 1,3-dimethylcyclobutadiene by confinement in a crystalline matrix. Science 329, 299–302 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Inokuma, Y., Kawano, M. & Fujita, M. Crystalline molecular flasks. Nature Chem. 3, 349–358 (2011).

    Article  CAS  Google Scholar 

  6. Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Haneda, T., Kawano, M., Kawamichi, T. & Fujita, M. Direct observation of the labile imine formation through single-crystal-to-single-crystal reactions in the pores of a porous coordination network. J. Am. Chem. Soc. 130, 1578–1579 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Haneda, T., Kawano, M., Kojima, T. & Fujita, M. Thermo-to-photo switching of the chromic behavior of salicylideneanilines via inclusion in a porous coordination network. Angew. Chem. Int. Ed. 46, 6643–6645 (2007).

    Article  CAS  Google Scholar 

  9. Kawano, M., Kobayashi, Y., Ozeki, T. & Fujita M. Direct crystallographic observation of a coordinatively unsaturated transition-metal complex in situ generated within a self-assembled cage. J. Am. Chem. Soc. 128, 6558–6559 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Kohyama, Y., Murase, T. & Fujita, M. Metal–organic proximity in a synthetic pocket. J. Am. Chem. Soc. 136, 2966–2969 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, J-P. & Chen, X-M. Optimised acetylene/carbon dioxide sorption in a dynamic porous crystal. J. Am. Chem. Soc. 131, 5516–5521 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Takamizawa, S. et al. Crystal transformation and host molecular motions in CO2 adsorption process of a metal benzoate pyrazine (MI=Rh, Cu). J. Am. Chem. Soc. 132, 3783–3792 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Rowsell, J. L. C., Spenser, E. C., Eckert, J., Howard, J. A. K. & Yaghi. O. M. Gas adsorption sites in a large-pore metal–organic framework. Science 309, 1350–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Vinogradova, E. V., Müller, P. & Buchwald, S. L. Structural reevaluation of the electrophilic hypervalent iodine reagent for trifluoromethylthiolation supported by the crystalline sponge method for X-ray analysis. Angew. Chem. Int. Ed. 126, 3189–3192 (2014).

    Article  Google Scholar 

  16. Ikemoto, K., Inokuma, Y., Rissanen, K. & Fujita, M. X-ray snapshot observation of palladium-mediated aromatic bromination in a porous complex. J. Am. Chem. Soc. 136, 6892–6895 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Cohen, S. M. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 112, 970–1000 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Evans, J. D., Sumby, C. J. & Doonan, C. J. Post-synthetic metalation of metal–organic frameworks. Chem. Soc. Rev. 43, 5933–5951 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Bloch, E. D. et al. Metal insertion in a microporous metal organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Bohnsack, A. M., Ibarra, I. A., Bakhmutov, V. I., Lynch, V. M. & Humphrey, S. M. Rational design of porous coordination polymers based on bis(phosphine)MCl2 complexes that exhibit high-temperature H2 sorption and chemical reactivity. J. Am. Chem. Soc. 135, 16038–16041 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Mulfort, K. L., Farha, O. K., Stern, C. L., Sarjeant, A. A. & Hupp, J. T. Post-synthesis alkoxide formation within metal–organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131, 3866–3868 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ma, L., Falkowski, J. M., Abney, C. & Lin, W. A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nature Chem. 2, 838–846 (2010).

    Article  CAS  Google Scholar 

  23. Canivet, J., Aguado, S., Schuurman, Y. & Farrusseng, D. MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J. Am. Chem. Soc. 135, 4195–4198 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, C-D., Hu A., Zhang L. & Lin W. A homochiral porous metal organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 127, 8940–8941 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Dau, P. V., Kim, M. & Cohen, S. M. Site-selective cyclometalation of a metal-organic framework. Chem. Sci. 4, 601–605 (2013).

    Article  CAS  Google Scholar 

  26. Jacobs, T., Clowes, R., Cooper, A. I. & Hardie, M. J. A chiral, self-catenating and porous metal–organic framework and its post-synthetic metal uptake. Angew. Chem. Int. Ed. 51, 5192–5195 (2012).

    Article  CAS  Google Scholar 

  27. Cotton, F. A. & Wilkinson, G. Advanced Inorganic Chemistry (Wiley, 1988).

    Google Scholar 

  28. Bloch, W. M. & Sumby, C. J. Guest-induced crystal-to-crystal expansion and contraction of a 3-D porous coordination polymer. Chem. Commun. 48, 2534–2536 (2012).

    Article  CAS  Google Scholar 

  29. Bloch, W. M., Babarao, R., Hill, M. R., Doonan, C. J. & Sumby, C. J. Post-synthetic structural processing in a metal–organic framework material as a mechanism for exceptional CO2/N2 selectivity. J. Am. Chem. Soc. 135, 10441–10448 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Bloch, W. M., Doonan, C. J. & Sumby, C. J. Using hinged ligands to target structurally flexible copper(II) MOFs. CrystEngComm 15, 9663–9671 (2013).

    Article  CAS  Google Scholar 

  31. Keene, T. D. et al. Solvent-modified dynamic porosity in chiral 3D kagome frameworks. Dalton Trans. 42, 7871–7879 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Pettinari, C., Santini, C., Leonesi, D., Cecchi, P. Synthesis and characterization of some zinc, cadmium and mercury(II) derivatives of bis(4-methylpyrazol-1-yl) alkanes. Polyhedron 13, 1553–1562 (1994).

    Article  CAS  Google Scholar 

  33. Trofimenko, S. Coordination chemistry of pyrazole-derived ligands. Chem. Rev. 72, 497–509 (1972).

    Article  CAS  Google Scholar 

  34. Shultz, A. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T. & Nguyen, S. T. Post-synthesis modification of a metal–organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc. 133, 13252–13255 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Morris, W. et al. Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorg. Chem. 51, 6443–6445 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Teuma, E. et al. Tandem carbonylation reactions: hydroformylation and hydroaminomethylation of alkenes catalyzed by cationic [(H2C(3,5-Me2pz)2)Rh(CO)L]+ complexes. Organometallics 22, 5261–5267 (2003).

    Article  CAS  Google Scholar 

  37. Oro, L. A. et al. Rhodium(I) complexes with bis(pyrazolyl)methane crystal structure of [Rh(COD)(CH2(Pz)2)]ClO4·½ C2H4Cl2 . J. Organomet. Chem. 276, 79–97 (1984).

    Article  CAS  Google Scholar 

  38. Ellis, P. R. et al. Oxidative addition of alkyl halides to rhodium(I) and iridium(I) dicarbonyl diiodides: key reactions in the catalytic carbonylation of alcohols. Organometallics 13, 3215–3226 (1994).

    Article  CAS  Google Scholar 

  39. Nguyen, D. H. et al. Reductive elimination of anhydrides from anionic iodo acetyl carboxylato rhodium complexes. Eur. J. Inorg. Chem. 2014, 326–336 (2014).

    Article  CAS  Google Scholar 

  40. Conifer, C. M. et al. Dicarbonylrhodium(I) complexes of bipyridine ligands with proximate H-bonding substituents and their application in methyl acetate carbonylation. Eur. J. Inorg. Chem. 2011, 3511–3522 (2011).

    Article  CAS  Google Scholar 

  41. Montag, M. et al. CO-induced methyl migration in a rhodium thiophosphoryl pincer complex and its comparison with phosphine-based complexes: the divergent effects of S and P donor ligands. Organometallics 32, 7163–7180 (2013).

    Article  CAS  Google Scholar 

  42. Peverati, R. & Truhlar, D. G. M11-L: a local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J. Phys. Chem. Lett. 3, 117–124 (2012).

    Article  CAS  Google Scholar 

  43. Lee, K. et al. Design of a metal–organic framework with enhanced back bonding for separation of N2 and CH4 . J. Am. Chem. Soc. 136, 698–704 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Feliz, M., Freixa, Z., van Leeuwen, P. W. N. M. & Bo, C. Revisiting the methyl iodide oxidative addition to rhodium complexes: a DFT study of the activation parameters. Organometallics 24, 5718–5723 (2005).

    Article  CAS  Google Scholar 

  45. Ingleson, M. J., Barrio, J. P., Guilbaud, J-P., Khimyak, Y. Z. & Rosseinsky, M. J. Framework functionalisation triggers metal binding. Chem. Commun. 2680–2682 (2008).

  46. Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A 46, 467–473 (1990).

    Google Scholar 

  47. Sheldrick, G. M. SHELXL-97 (University of Göttingen, 1997).

    Google Scholar 

  48. Barbour, L. J. A software tool for supramolecular crystallography. J. Supramol. Chem. 1, 189–191 (2001).

    Google Scholar 

Download references

Acknowledgements

C.J.D. and C.J.S. acknowledge the Science and Industry Endowment Fund for financial support and the Australian Research Council for funding Future Fellowships (FT100100400 and FT0991910). Aspects of this research were undertaken on the MX1 and MX2 beamlines at the Australian Synchrotron, Victoria, Australia. M.L.C. acknowledges generous allocations of supercomputing time on the National Facility of the National Computational Infrastructure and an ARC Future Fellowship (FT100100320). Correspondence and requests for materials should be addressed to C.J.D. and C.J.S.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. W.M.B. and A.B. undertook most of the synthetic work and analysis. C.J.C. measured and interpreted the ICP-MS data. W.M.B., A.B., C.J.C. and C.J.S. collected, solved and refined the SCXRD data. R.L. and M.L.C. undertook the computational studies. W.M.B., C.J.D. and C.J.S. wrote the manuscript with input from the other authors.

Corresponding authors

Correspondence to Christian J. Doonan or Christopher J. Sumby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2999 kb)

Supplementary information

Crystallographic data for compound 1-des (CIF 32 kb)

Supplementary information

Crystallographic data for compound 1.[Co(H2O)4]Cl2 (CIF 6735 kb)

Supplementary information

Crystallographic data for compound 1.[CoCl2] (CIF 32894 kb)

Supplementary information

Crystallographic data for compound 1.[Rh(CO)2][RhCl2(CO)2] (CIF 36 kb)

Supplementary information

Crystallographic data for compound 1.[Rh(H2O)4]Cl3 (CIF 35 kb)

Supplementary information

Crystallographic data for compound 1.[Rh(COMe)(CO)(CH3CN)I]I (CIF 4420 kb)

Supplementary information

Crystallographic data for compound 1.DMF (CIF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, W., Burgun, A., Coghlan, C. et al. Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks. Nature Chem 6, 906–912 (2014). https://doi.org/10.1038/nchem.2045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing