Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks

Abstract

Metal–organic frameworks (MOFs) are a promising class of porous materials because it is possible to mutually control their porous structure, composition and functionality. However, it is still a challenge to predict the network topology of such framework materials prior to their synthesis. Here we use a new rare earth (RE) nonanuclear carboxylate-based cluster as an 18-connected molecular building block to form a gea-MOF (gea-MOF-1) based on a (3,18)-connected net. We then utilized this gea net as a blueprint to design and assemble another MOF (gea-MOF-2). In gea-MOF-2, the 18-connected RE clusters are replaced by metal–organic polyhedra, peripherally functionalized so as to have the same connectivity as the RE clusters. These metal–organic polyhedra act as supermolecular building blocks when they form gea-MOF-2. The discovery of a (3,18)-connected MOF followed by deliberate transposition of its topology to a predesigned second MOF with a different chemical system validates the prospective rational design of MOFs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Topological exploration that led to the discovery of gea-MOF-1.
Figure 2: Cluster rearrangement and packing in gea-MOF-1.
Figure 3: SBB approach to design expanded gea-MOF-2.
Figure 4: Relationship between gea-MOF-1 and gea-MOF-2.
Figure 5: gea-MOF-1 shows great potential for hydrocarbon separation.

References

  1. 1

    Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    PubMed  Google Scholar 

  3. 3

    Eubank, J. F. et al. The quest for modular nanocages: tbo-MOF as an archetype for mutual substitution, functionalization, and expansion of quadrangular pillar building blocks. J. Am. Chem. Soc. 133, 14204–14207 (2011).

    CAS  PubMed  Google Scholar 

  4. 4

    Eubank, J. F. et al. The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. J. Am. Chem. Soc. 133, 17532–17535 (2011).

    CAS  PubMed  Google Scholar 

  5. 5

    Zhou, H. C., Long, J. R. & Yaghi, O. M. Metal–organic frameworks. Chem. Rev. 112, 673–1268 (2012).

    CAS  Google Scholar 

  6. 6

    Long, J. R. & Yaghi, O. M. Metal–organic frameworks, Chem. Soc. Rev. 38, 1201–1508 (2009).

    Google Scholar 

  7. 7

    Li, M., Li, D., O'Keeffe, M. & Yaghi, O. M. Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014).

    CAS  PubMed  Google Scholar 

  8. 8

    Eubank, J. F. et al. On demand: the singular rht net, an ideal blueprint for the construction of a metal–organic framework (MOF) platform. Angew. Chem. Int. Ed. 51, 10099–10103 (2012).

    CAS  Google Scholar 

  9. 9

    Nouar, F. et al. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks. J. Am. Chem. Soc. 130, 1833–1835 (2008).

    CAS  PubMed  Google Scholar 

  10. 10

    O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    CAS  PubMed  Google Scholar 

  11. 11

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    PubMed  Google Scholar 

  12. 12

    Dan-Hardi, M. et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857–10859 (2009).

    CAS  PubMed  Google Scholar 

  13. 13

    Guillerm, V. et al. A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(IV) dicarboxylates. Chem. Commun. 46, 767–769 (2010).

    CAS  Google Scholar 

  14. 14

    Xue, D-X. et al. Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 135, 7660–7667 (2013).

    CAS  PubMed  Google Scholar 

  15. 15

    Guillerm, V. et al. A series of isoreticular, highly stable, porous zirconium oxide based metal–organic frameworks. Angew. Chem. Int. Ed. 51, 9267–9271 (2012).

    CAS  Google Scholar 

  16. 16

    Morris, W. et al. Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorg. Chem. 51, 6443–6445 (2012).

    CAS  PubMed  Google Scholar 

  17. 17

    Du, D-Y. et al. An unprecedented (3,4,24)-connected heteropolyoxozincate organic framework as heterogeneous crystalline Lewis acid catalyst for biodiesel production. Sci. Rep. 3, 2616 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Cairns, A. J. et al. Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. J. Am. Chem. Soc. 130, 1560–1561 (2008).

    CAS  PubMed  Google Scholar 

  19. 19

    Alkordi, M. H. et al. Zeolite-like metal–organic frameworks (ZMOFs) based on the directed assembly of finite metal–organic cubes (MOCs). J. Am. Chem. Soc. 131, 17753–17755 (2009).

    CAS  PubMed  Google Scholar 

  20. 20

    Zheng, X-J., Jin, L-P. & Gao, S. Synthesis and characterization of two novel lanthanide coordination polymers with an open framework based on an unprecedented [Ln7(μ-3-OH)8]13+ cluster. Inorg. Chem. 43, 1600–1602 (2004).

    CAS  PubMed  Google Scholar 

  21. 21

    Devic, T., Serre, C., Audebrand, N., Marrot, J. & Férey, G. MIL-103, a 3-D lanthanide-based metal organic framework with large one-dimensional tunnels and a high surface area. J. Am. Chem. Soc. 127, 12788–12789 (2005).

    CAS  PubMed  Google Scholar 

  22. 22

    Park, Y. K. et al. Crystal structure and guest uptake of a mesoporous metal–organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew. Chem. Int. Ed. 46, 8230–8233 (2007).

    CAS  Google Scholar 

  23. 23

    Luo, J. et al. Hydrogen adsorption in a highly stable porous rare-earth metal–organic framework: sorption properties and neutron diffraction studies. J. Am. Chem. Soc. 130, 9626–9627 (2008).

    CAS  Google Scholar 

  24. 24

    Lin, Z. et al. Pore size-controlled gases and alcohols separation within ultramicroporous homochiral lanthanide–organic frameworks. J. Mater. Chem. 22, 7813–7818 (2012).

    CAS  Google Scholar 

  25. 25

    Lin, Z. et al. Ultrasensitive sorption behavior of isostructural lanthanide–organic frameworks induced by lanthanide contraction. J. Mater. Chem. 22, 21076–21084 (2012).

    CAS  Google Scholar 

  26. 26

    Duan, J. et al. High CO2/CH4 and C2 hydrocarbons/CH4 selectivity in a chemically robust porous coordination polymer. Adv. Funct. Mater. 23, 3525–3530 (2013).

    CAS  Google Scholar 

  27. 27

    Luebke, R. et al. The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chem. Commun. 48, 1455–1457 (2012).

    CAS  Google Scholar 

  28. 28

    Li, J-R. & Zhou, H-C. Metal–organic hendecahedra assembled from dinuclear paddlewheel nodes and mixtures of ditopic linkers with 120 and 90 degrees bend angles. Angew. Chem. Int. Ed. 48, 8465–8468 (2009).

    CAS  Google Scholar 

  29. 29

    Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012).

    CAS  PubMed  Google Scholar 

  30. 30

    Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    CAS  PubMed  Google Scholar 

  31. 31

    Düren, T., Millange, F., Férey, G., Walton, K. S. & Snurr, R. Q. Calculating geometric surface areas as a characterization tool for metal–organic frameworks. J. Phys. Chem. C 111, 15350–15356 (2007).

    Google Scholar 

  32. 32

    Koh, K., Wong-Foy, A. G. & Matzger, A. J. A porous coordination copolymer with over 5000 m2/g BET surface area. J. Am. Chem. Soc. 131, 4184–4184 (2009).

    CAS  PubMed  Google Scholar 

  33. 33

    Wilmer, C. E. et al. Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013).

    CAS  Google Scholar 

  34. 34

    Yang, Q. et al. CH4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks. Chem. Commun. 48, 9831–9833 (2012).

    CAS  Google Scholar 

  35. 35

    Guo, Z. et al. A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew. Chem. Int. Ed. 50, 3178–3181 (2011).

    CAS  Google Scholar 

  36. 36

    Peng, Y. et al. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013).

    CAS  PubMed  Google Scholar 

  37. 37

    Wu, H., Gong, Q., Olson, D. H. & Li, J. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem. Rev. 112, 836–868 (2012).

    CAS  PubMed  Google Scholar 

  38. 38

    Llewellyn, P. L. et al. Complex adsorption of short linear alkanes in the flexible metal–organic-framework MIL-53(Fe). J. Am. Chem. Soc. 131, 13002–13008 (2009).

    CAS  PubMed  Google Scholar 

  39. 39

    Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    CAS  PubMed  Google Scholar 

  40. 40

    Klein, N., Henschel, A. & Kaskel, S. n-Butane adsorption on Cu3(btc)2 and MIL-101. Micropor. Mesopor. Mater. 129, 238–242 (2010).

    CAS  Google Scholar 

  41. 41

    Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 256, 1384–1405 (2012).

    CAS  Google Scholar 

  42. 42

    Cokoja, M., Bruckmeier, C., Rieger, B., Herrmann, W. A. & Kühn, F. E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew. Chem. Int. Ed. 50, 8510–8537 (2011).

    CAS  Google Scholar 

  43. 43

    Roeser, J., Kailasam, K. & Thomas, A. Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. Chem. Sus. Chem. 5, 1793–1799 (2012).

    CAS  Google Scholar 

  44. 44

    Lescouet, T., Chizallet, C. & Farrusseng, D. The origin of the activity of amine-functionalized metal–organic frameworks in the catalytic synthesis of cyclic carbonates from epoxide and CO2 . Chem. Cat. Chem. 4, 1725–1728 (2012).

    CAS  Google Scholar 

  45. 45

    Song, J. et al. MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem. 11, 1031–1036 (2009).

    CAS  Google Scholar 

  46. 46

    Monassier, A. et al. Synthesis of cyclic carbonates from epoxides and CO2 under mild conditions using a simple, highly efficient niobium-based catalyst. Chem. Cat. Chem. 5, 1321–1324 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).

Author information

Affiliations

Authors

Contributions

V.G. and M.E. contributed to the conceptual approach to designing the material synthetic experiments; V.G. carried out the synthetic experiments; V.G., Ł.W. and K.A. conducted and interpreted the crystallographic experiments; V.G. performed the topological analysis; Y.B. and A.J.C. conducted and interpreted low- and high-pressure sorption experiments and IAST models (Y.B.); V.D. designed, conducted and interpreted catalysis experiments; V.G., M.E. and Ł.J.W. envisioned, designed and synthesized (Ł.J.W.) the organic hexacarboxylic ligand; V.G., Y.B. and M.E. wrote the manuscript.

Corresponding author

Correspondence to Mohamed Eddaoudi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10517 kb)

Supplementary information

Crystallographic data for compound gea-MOF-1 (CIF 22 kb)

Supplementary information

Crystallographic data for compound gea-MOF-2 (CIF 39 kb)

Supplementary information

Crystallographic data for compound Tb(III) hexanuclear cluster (CIF 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guillerm, V., Weseliński, Ł., Belmabkhout, Y. et al. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nature Chem 6, 673–680 (2014). https://doi.org/10.1038/nchem.1982

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing