Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chlorotrinitromethane and its exceptionally short carbon–chlorine bond

Abstract

Compounds that deviate from the normal range of bonding can help to assess the strengths and weaknesses of the models currently used to describe chemical bonds. Furthermore, computer simulations of molecules require experimental data to describe accurately the energies and forces between interacting molecules. Compounds that contain the trinitromethyl group, with three nitro groups bonded to one carbon atom, show remarkable inter- and intramolecular effects. In this paper, we report the structural features of chlorotrinitromethane in the solid state and present the first reliable solid-state geometry parameters of an α-halogen derivative of the trinitromethyl pseudohalogen. We found several intriguing geometrical features in terms of intra- and intermolecular interactions, as well as an exceptionally short carbon–chlorine bond (1.694(1) Å). Using a combined crystallographic and computational approach, we show that these effects can be described in terms of the computed electrostatic potential of the molecular surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of chlorotrinitromethane.
Figure 2: Carbon–chlorine bond lengths.
Figure 3: The molecular electrostatic potential of chlorotrinitromethane.

Similar content being viewed by others

References

  1. Hoffmann, R. & Hopf, H. Learning from molecules in distress. Angew. Chem. Int. Ed. 47, 4474–4481 (2008).

    CAS  Google Scholar 

  2. Stone, A. J. Intermolecular potentials. Science 321, 787–789 (2008).

    CAS  PubMed  Google Scholar 

  3. Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. Halogen bonding in supramolecular chemistry. Angew. Chem. Int. Ed. 47, 6114–6127 (2008).

    CAS  Google Scholar 

  4. Metrangolo, P. & Resnati, G. Halogen versus hydrogen. Science 321, 918–919 (2008).

    CAS  PubMed  Google Scholar 

  5. Göbel, M. & Klapötke, T. M. Development and testing of energetic materials: the concept of high densities based on the trinitroethyl functionality. Adv. Funct. Mater. 19, 347–365 (2009).

    Google Scholar 

  6. Birckenbach, L., Huttner, K. & Stein, W. Die Hydrolysen-Konstanten des Brom-tricyanmethyls und des Chlor-, Brom- und Jod-trinitromethyls. Chem. Ber. 62, 2065–2075 (1929).

    Google Scholar 

  7. Pepkin, V. I., Matyushin, Yu. N., Khisamutdinov, G. Kh., Slovetskii, V. I. & Fainzil'berg, A. A. Thermochemical properties of α-azidopolynitroalkanes and the dissociation energy of C–N3 bonds in organic azides. Khim. Fiz. 12, 1399–1403 (1993).

    CAS  Google Scholar 

  8. Khisamutdinov, G. Kh., Slovetskii, V. I., Golub, M. Yu., Shevelev, S. A. & Fainzil'berg, A. A. α-Azidopolynitroalkanes. Synthesis and vibrational spectra. Russ. Chem. Bull. 46, 324–327 (1997).

    CAS  Google Scholar 

  9. Parker, C. O., Emmons, W. E., Rolewicz, H. A. & McCallum, K. S. Chemistry of dinitroacetonitrile – I: Preparation and properties of dinitroacetonitrile and its salts. Tetrahedron 17, 79–87 (1962).

    CAS  Google Scholar 

  10. Macbeth, A. K. & Pratt, D. D. XLIII. – The halogen derivatives of nitroform. J. Chem. Soc. 119, 354–358 (1921).

    CAS  Google Scholar 

  11. Will, W. Hexanitroethane. Chem. Ber. 47, 961–965 (1914).

    Google Scholar 

  12. Levchenkov, D. V., Kharitonkin, A. B. & Shlyapochnikov, V. A. Molecular structures of trinitromethane derivatives. Russ. Chem. Bull. 50, 385–389 (2001).

    CAS  Google Scholar 

  13. Shlyapochnikov, V. A., Levchenkov, D. V. & Kharitonkin, A. B. Vibrational spectra of trinitromethane derivatives. Russ. Chem. Bull. 50, 1173–1180 (2001).

    CAS  Google Scholar 

  14. Vulfson, S. G., Timosheva, A. P., Vereshchagin, A. N. & Arbuzov, B. A. Molecular polarizability and the three-dimensional structure of substituted trinitromethanes. J. Mol. Struct. 40, 225–231 (1977).

    CAS  Google Scholar 

  15. Shlyapochnikov, V. A., Fainzil'berg, A. A. & Novikov, S. S. The spectra and structures of halogen derivatives of trinitromethane. Izv. Akad. Nauk SSSR 3, 519–520 (1961).

    Google Scholar 

  16. Sadova, N. I., Popik, N. I., Vilkov, L. V., Pankrushev, Ju. A. & Shlyapochnikov, V. A. Electron diffraction study of gaseous CH(NO2)3 and CCl(NO2)3 . J. Chem. Soc. Chem. Commun. 19, 708–709 (1973).

    Google Scholar 

  17. Sadova, N. I., Popik, N. I. & Vilkov, L. V. Electron–diffraction investigation of the structure of the HC(NO2)3, ClC(NO2)3, and BrC(NO2)3 molecules in the gas phase. Zh. Strukt Khim. 17, 298–303 (1976).

    CAS  Google Scholar 

  18. Demaison, J., Wlodarczak, G. & Rudolph, H. D. in Advances in Molecular Structure Research, Vol. 3 (eds Hargittai, I. & Hargittai, M.) 1–51 (JAI Press: Greenwich, 1997).

    CAS  Google Scholar 

  19. Demaison, J., Margulès, L & Boggs, J. E. The equilibrium C–Cl, C–Br, and C–I bond lengths from ab initio calculations, microwave and infrared spectroscopies, and empirical correlations. Struct. Chem. 14, 159–174 (2003).

    CAS  Google Scholar 

  20. Golovina, N. I. & Atovmyan, L. O. Crystal structure of iodotrinitromethane. Zh. Strukt. Khim. 7, 235–239 (1966).

    CAS  Google Scholar 

  21. Shidlovskaya, A. N., Syrkin, Ya. K., Novikov, S. S., Fainzil'berg, A. A., Sevost'yanova, V. V. & Gulevskaya, V. I. Dipole moments of some halogenated polynitroalkanes. Dokl. Akad. Nauk SSSR 132, 1367–1377 (1960).

    Google Scholar 

  22. Levow, T. E., Union Carbide Corporation. Novel organofunctional silicon compounds substituted with halogen and process for making same. US Patent 3694480 (1972).

  23. Dakhis, M. I., Levin, A. A. & Shlyapochnikov, V. A. Equilibrium angles, barriers to internal rotation, and electronic structure of trinitromethane and its halo derivatives. Zh. Strukt. Khim. 14, 162–163 (1971).

    Google Scholar 

  24. Larkins, J. T., Nicholson, J. M. & Saalfeld, F. E. Negative and positive mass spectra of some substituted trinitromethanes. Org. Mass Spectrom. 5, 265–277 (1971).

    CAS  Google Scholar 

  25. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Google Scholar 

  26. Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).

    CAS  Google Scholar 

  27. Zimmer, M. F., Barcody, E. E., Schwartz, M. & McAllister, M. P. Heat of formation of trinitrochloromethane by combustion calorimetry. J. Chem. Eng. Data 9, 527–529 (1964).

    CAS  Google Scholar 

  28. Reed, A. & Schleyer, P. v. R. The anomeric effect with central atoms other than carbon. 1. Strong interactions between nonbonded substituents in polyfluorinated first- and second-row hydrides. J. Am. Chem. Soc. 109, 7362–7373 (1987).

    CAS  Google Scholar 

  29. Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    CAS  Google Scholar 

  30. Harcourt, R. D. & Klapötke, T. M. Pauling three-electron bonds and increased valence structures as components of the “intellectual heritage” of qualitative valence bond theory. Res. Trends 9, 11–22 (2006).

    CAS  Google Scholar 

  31. Witt, J. R., Britton, D. & Mahon C. The crystal structures of BrC(CN)3, ClC(CN)3, and CH3C(CN)3 . Acta Crystallogr. B 28, 950–955 (1972).

    CAS  Google Scholar 

  32. Huntley, D. R., Markopoulos, G., Donovan, P. M., Scott, L. T. & Hoffmann, R. Squeezing C–C bonds. Angew. Chem. Int. Ed. 44, 7549–7553 (2005).

    CAS  Google Scholar 

  33. Schomaker, V. & Stevenson, D. R. Some revisions of the covalent radii and the additivity rule for the lengths of partially ionic single covalent bonds. J. Am. Chem. Soc. 63, 37–40 (1941).

    CAS  Google Scholar 

  34. Pritchard, H. O. & Skinner, H. A. The concept of electronegativity. Chem. Rev. 55, 745–786 (1955).

    CAS  Google Scholar 

  35. Hammet, L. P. Some relations between reaction rates and equilibrium constants. Chem. Rev. 17, 125–136 (1935).

    Google Scholar 

  36. Hammet, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59, 96–103 (1937).

    Google Scholar 

  37. Taft, R. W. in Steric Effects in Organic Chemistry (ed. Newman, M. S.) Ch. 13 (Wiley, 1956).

  38. Hine, J. & Bailey, W. C. Jr, Substituent constants for the trinitromethyl-, 1,1-dinitroethyl-, and related groups. J. Org. Chem. 26, 2098–2099 (1960).

    Google Scholar 

  39. Datta, D. Taft's substitutent constants, σ* and σI, and Huheey's group electronegativity. J. Phys. Org. Chem. 4, 96–100 (1991).

    CAS  Google Scholar 

  40. Huheey, J. E. Group electronegativity and polar substituent constants. J. Org. Chem. 31, 2365–2368 (1966).

    CAS  Google Scholar 

  41. Stewart, R. F. Valence structure from X-ray diffraction data: physical properties. J. Chem. Phys. 57, 1664–1668 (1972).

    CAS  Google Scholar 

  42. Politzer, P. & Truhlar, D. G. Chemical Applications of Atomic and Molecular Electrostatic Potentials (Plenum Press, 1981).

  43. Bader, R. F. W., Carroll, M. T, Cheeseman, J. R. & Chang, C. Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 109, 7968–7979 (1987).

    CAS  Google Scholar 

  44. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. An overview of halogen bonding. J. Mol. Model. 13, 305–311 (2007).

    CAS  PubMed  Google Scholar 

  45. Murray, J. S., Lane, P. & Politzer, P. Expansion of the σ-hole concept. J. Mol. Model. 15, 723–729 (2009).

    CAS  PubMed  Google Scholar 

  46. Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. Halogen bonding: the σ-hole. J. Mol. Model. 13, 291–296 (2007).

    Google Scholar 

  47. Politzer, P., Murray, J. S., & Lane, P. σ-Hole bonding and hydrogen bonding: competitive interactions. Int. J. Quant. Chem. 107, 3046–3052 (2007).

    CAS  Google Scholar 

  48. Di Paolo, T. & Sandorfy, C. On the hydrogen bond breaking ability of fluorocarbons containing higher halogens. Can. J. Chem. 52, 3612–3622 (1974).

    CAS  Google Scholar 

  49. Rosenfield, R. E. Jr, Parthasarathy, R. & Dunitz, J. D. Directional preferences of nonbonded atomic contacts with divalent sulphur. 1. Electrophiles and nucleophiles. J. Am. Chem. Soc. 99, 4860–4862 (1977).

    CAS  Google Scholar 

  50. Murray-Rust, P. & Motherwell, W. D. S. Computer retrieval and analysis of molecular geometry 4. Intermolecular interactions. J. Am. Chem. Soc. 101, 4374–4376 (1979).

    CAS  Google Scholar 

  51. Auffinger, P., Hays, F. A., Westhof, E. & Shing Ho, P. Halogen bonds in biological molecules. Proc. Natl Acad. Sci. USA 101, 16789–16794 (2004).

    CAS  PubMed  Google Scholar 

  52. Brinck T., Murray J. S. & Politzer, P. Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int. J. Quant. Chem., Quant. Biol. Symp. 19, 57–64 (1992).

    CAS  Google Scholar 

  53. Murray, J. S, Concha, M. C, Lane, P., Hobza, P. & Politzer, P. Blue shifts vs red shifts in σ-hole bonding. J. Mol. Model. 14, 699–704 (2008).

    CAS  PubMed  Google Scholar 

  54. Wang, W., Wang, N. B., Zheng, W. & Tian, A. Theoretical study on the blue shifting halogen bond. J. Phys. Chem. A 108, 1799–1805 (2004).

    CAS  Google Scholar 

  55. Brändström, A. Prediction of Taft's σ* parameter for alkyl groups and alkyl groups containing polar substituents. J. Chem. Soc., Perkin Trans. 2, 1855–1857 (1999).

    Google Scholar 

  56. Hübschle, C. B. & Luger, P. MolIso – a program for colour-mapped iso-surfaces. J. Appl. Cryst. 39, 901–904 (2006).

    Google Scholar 

  57. Farrugia, L. J. ORTEP-3 for Windows—a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 30, 565 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work by the Ludwig-Maximilian University of Munich (LMU) and the Fonds der Chemischen Industrie is gratefully acknowledged. M.G. thanks the Cusanuswerk for a fellowship. P.P. and J.S.M. appreciate a Defence Threat Reduction Agency grant. We thank R. Harcourt for many inspired valence bond discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.G. conceived, designed and carried out the experiment, analysed the data, interpreted and discussed the results and wrote the paper. B.H.T. provided the visualization of the molecular electrostatic potentials as well as NBO calculations. T.M.K. provided NBO calculations as well as the increased valence bond description and discussed the results. J.S.M. and P.P. provided the molecular electrostatic potential calculations, analysed the data, discussed the results and co-wrote the paper.

Corresponding authors

Correspondence to Peter Politzer or Thomas M. Klapötke.

Supplementary information

Supplementary information

Supplementary information (PDF 398 kb)

Supplementary information

Crystallographic data for compound 1, chlorotrinitromethane (CIF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göbel, M., Tchitchanov, B., Murray, J. et al. Chlorotrinitromethane and its exceptionally short carbon–chlorine bond. Nature Chem 1, 229–235 (2009). https://doi.org/10.1038/nchem.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing