Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A boron–boron coupling reaction between two ethyl cation analogues

Subjects

Abstract

The design of larger architectures from smaller molecular building blocks by element–element coupling reactions is one of the key concerns of synthetic chemistry, so a number of strategies were developed for this bottom-up approach. A general scheme is the coupling of two elements with opposing polarity or that of two radicals. Here, we show that a B–B coupling reaction is possible between two boron analogues of the ethyl cation, resulting in the formation of an unprecedented dicationic tetraborane. The bonding properties in the rhomboid B4 core of the product can be described as two B–B units connected by three-centre, two-electron bonds, sharing the short diagonal. Our discovery might lead the way to the long sought-after boron chain polymers with a structure similar to the silicon chains in β-SiB3. Moreover, the reaction is a prime textbook example of the influence of multiple-centre bonding on reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolobal analogy and reaction sequence leading to 3.
Figure 2: Measured and simulated high-resolution mass spectrometry (HR-ESI+) peaks of 3[HB(C6F5)3]2, showing the absence of monocation 2.
Figure 3: Structure of tetraborane dication 3 in the salt 3[HB(C6F5)3]2, as revealed by single-crystal XRD analysis and calculated charge density of 3.

Similar content being viewed by others

References

  1. De Meijere, A. & Diederich, F. Metal-Catalysed Cross-Coupling Reactions 2nd edn (Wiley-VCH, 2008).

    Google Scholar 

  2. Tamao, K. & Miyaura, N. Introduction to cross-coupling reactions. Top. Curr. Chem. 219, 1–9 (2002).

    Article  CAS  Google Scholar 

  3. Beller, M. & Zapf, A. The development of efficient catalysts for palladium-catalyzed coupling reactions of aryl halides. Chem. Commun. 2005, 431–440 (2005).

    Google Scholar 

  4. Yin, L. & Liebscher, J. Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 107, 133–173 (2007).

    Article  CAS  Google Scholar 

  5. Molnár, Á. Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem. Rev. 111, 2251–2320 (2011).

    Article  Google Scholar 

  6. Osorio, E., Olson, J. K., Tiznado, W. & Boldyrev, A. I. Analysis of why boron avoids sp2 hybridization and classical structures in the BnHn +2 series. Chem. Eur. J. 18, 9677–9681 (2012).

    Article  CAS  Google Scholar 

  7. Ciobanu, O. et al. Thermal and catalytic dehydrogenation of the guanidine–borane adducts H3B·hppH (hppH=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) and H3B·N(H)C(NMe2)2: a combined experimental and quantum chemical study. Eur. J. Inorg. Chem. 5482–5493 (2008).

    Article  Google Scholar 

  8. Ciobanu, O., Kaifer, E., Enders, M. & Himmel, H-J. Synthesis of a stable B2H5+ analogue by protonation of a double base-stabilized diborane(4). Angew. Chem. Int. Ed. 48, 5538–5541 (2009).

    Article  CAS  Google Scholar 

  9. Schulenberg, N., Ciobanu, O., Kaifer, E., Wadepohl, H. & Himmel, H-J. The doubly base-stabilized diborane(4) [HB(μ-hpp)]2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate): synthesis by catalytic dehydrogenation and reactions with S8 and disulfides. Eur. J. Inorg. Chem. 5201–5210 (2010).

  10. Braunschweig, H. & Guethlein, F. Transition-metal-catalyzed synthesis of diboranes(4). Angew. Chem. Int. Ed. 50, 12613–12616 (2011).

    Article  CAS  Google Scholar 

  11. Braunschweig, H., Claes, C. & Guethlein, F. Dehydrocoupling of catecholborane catalyzed by group 4 compounds. J. Organomet. Chem. 706–707, 144–145 (2012).

    Article  Google Scholar 

  12. Wagner, A., Kaifer, E. & Himmel, H-J. Diborane(4)–metal bonding: between hydrogen bridges and frustrated oxidative addition. Chem. Commun. 48, 5277–5279 (2012).

    Article  CAS  Google Scholar 

  13. Dureen, M. A., Lough, A., Gilbert, T. M. & Stephan, D. W. B–H activation by frustrated Lewis pairs: borenium or boryl phosphonium cation? Chem. Commun. 4303–4305 (2008).

  14. DeVries, T. S. & Vedejs, E. Electrophilic activation of Lewis base complexes of borane with trityl tetrakis(pentafluorophenyl)borate. Organometallics 26, 3079–3081 (2007).

    Article  CAS  Google Scholar 

  15. Wang, P. & Vidal, C. R. Dissociation of multiply ionized alkanes from methane to n-butane due to electron impact. Chem. Phys. 280, 309–329 (2002).

    Article  CAS  Google Scholar 

  16. Price, W. S. NMR Studies of Translational Motion, Principles and Applications (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  17. Evans, R. et al. Quantitative interpretation of diffusion-ordered NMR spectra: can we rationalize small molecule diffusion coefficients? Angew. Chem. Int. Ed. 52, 3199–3202 (2013).

    Article  CAS  Google Scholar 

  18. Maier, A., Hofmann, M., Pritzkow, H. & Siebert, W. A planar, aromatic bicyclo-tetraborane(4). Angew. Chem. Int. Ed. 41, 1529–1532 (2002).

    Article  CAS  Google Scholar 

  19. Präsang, C., Hofmann, M., Geiseler, G., Massa, W. & Berndt, A. Aromatic boranes with planar-tetracoordinate boron atoms and very short B–B distances. Angew. Chem. Int. Ed. 41, 1526–1529 (2002).

    Article  Google Scholar 

  20. Präsang, C. et al. A. Two-electron aromatics containing three and four adjacent boron atoms. Pure Appl. Chem. 75, 1175–1182 (2003).

    Article  Google Scholar 

  21. Pardoe, J. A. J. et al. The surprising structures of B8F12 and B10F12 . Angew. Chem. Int. Ed. 42, 571–573 (2003).

    Article  CAS  Google Scholar 

  22. Balakrishnarajan, M. M. & Hoffmann, R. Electron-deficient bonding in rhomboid rings. J. Am. Chem. Soc. 126, 13119–13131 (2004).

    Article  CAS  Google Scholar 

  23. Koch, W. et al. Structures, stabilities, and bonding in CBe2, C2Be, and C2Be2 . J. Am. Chem. Soc. 108, 5732–5737 (1986).

    Article  CAS  Google Scholar 

  24. Kameda, M. & Kodama, G. Cleavage reaction of pentaborane(9). Formation of a new hypho triborane adduct. Inorg. Chem. 19, 2288–2292 (1980).

    Article  CAS  Google Scholar 

  25. Piers, W. E., Bourke, S. C. & Conroy, K. D. Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. Angew. Chem. Int. Ed. 44, 5016–5036 (2005).

    Article  CAS  Google Scholar 

  26. Kinjo, R., Donnadieu, B., Celik, M. A., Frenking, G. & Bertrand, G. Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. Science 333, 610–613 (2011).

    Article  CAS  Google Scholar 

  27. Vidovic, D., Findlater, M. & Cowley, A. H. A β-diketiminate-supported boron dication. J. Am. Chem. Soc. 129, 8436–8437 (2007).

    Article  CAS  Google Scholar 

  28. Braunschweig, H. et al. Synthesis and structure of a ferrocenyl boron dication. Inorg. Chem. 47, 7456–7458 (2008).

    Article  CAS  Google Scholar 

  29. Dinda, R. et al. Synthesis and structural characterization of a stable dimeric boron(II) dication. Angew. Chem. Int. Ed. 46, 9110–9113 (2007).

    Article  CAS  Google Scholar 

  30. Braunschweig, H. et al. A. Controlled homocatenation of boron on a transition metal. Nature Chem. 4, 563–567 (2012).

    Article  CAS  Google Scholar 

  31. Braunschweig, H. & Dewhurst, R. D. Single, double, triple bonds and chains: the formation of electron-precise B–B bonds. Angew. Chem. Int. Ed. 52, 3574–3583 (2013).

    Article  CAS  Google Scholar 

  32. TURBOMOLE version 6.1 (University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 2009); www.turbomole.com

  33. Lu, T. Multiwfn: A Multifunctional Wavefunction Analyser version 2.6.1; http://multiwfn.codeplex.com/releases/view/97295

  34. DENZO-SMN Data processing software, Nonius (1998); http://www.nonius.nl

  35. Sheldrick, G. M. SHELXS-97: Program for Crystal Structure Solution (Univ. Göttingen, 1997); http://shelx.uni-ac.gwdg.de/SHELX/index.php

  36. Sheldrick, G. M. SHELXL-97: Program for Crystal Structure Refinement (Univ. Göttingen, 1997); http://shelx.uni-ac.gwdg.de/SHELX/index.php

  37. Ibers, J. A. & Hamilton, W. C. International Tables for X-ray Crystallography Vol. 4 (Kynoch Press, 1974).

    Google Scholar 

  38. Zsolnai, L. & Huttner, G. XPMA (Univ. Heidelberg, 1994); http://www.uni-heidelberg.de/institute/fak12/AC/huttner/software/software.html

Download references

Acknowledgements

The authors thank W. Siebert for discussions and the Deutsche Forschungsgemeinschaft (DFG) for continuous financial support.

Author information

Authors and Affiliations

Authors

Contributions

H-J.H. conceived and supervised the study. S.L. performed the syntheses and the computational experiments. E.K. performed the X-ray crystallographic measurements. M.E. performed the DOSY-NMR measurements. S.L. and M.E. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Hans-Jörg Himmel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 973 kb)

Supplementary information

Crystallographic data for compound 3[HB(C6F5)3]2. (CIF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litters, S., Kaifer, E., Enders, M. et al. A boron–boron coupling reaction between two ethyl cation analogues. Nature Chem 5, 1029–1034 (2013). https://doi.org/10.1038/nchem.1776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing