Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism

Abstract

Although fullerenes were discovered nearly three decades ago, the mechanism of their formation remains a mystery. Many versions of the classic ‘bottom-up’ formation mechanism have been advanced, starting with C2 units that build up to form chains and rings of carbon atoms and ultimately form those well-known isolated fullerenes (for example, Ih-C60). In recent years, evidence from laboratory and interstellar observations has emerged to suggest a ‘top-down’ mechanism, whereby small isolated fullerenes are formed via shrinkage of giant fullerenes generated from graphene sheets. Here, we present molecular structural evidence for this top-down mechanism based on metal carbide metallofullerenes M2C2@C1(51383)-C84 (M = Y, Gd). We propose that the unique asymmetric C1(51383)-C84 cage with destabilizing fused pentagons is a preserved ‘missing link’ in the top-down mechanism, and in well-established rearrangement steps can form many well-known, high-symmetry fullerene structures that account for the majority of solvent-extractable metallofullerenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Top-down mechanism for fullerene formation.
Figure 2: 13C NMR spectroscopic and single-crystal study of M2C2@C1(51383)-C84 (M = Y, Gd).
Figure 3: The fullerene structural rearrangement map starting from the missing link C1(51383)-C84 cage.
Figure 4: Isotopic distribution for 13C-enriched fullerene C84 and metallofullerene Y2C84.

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60-buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  2. Ross, R. B. et al. Endohedral fullerenes for organic photovoltaic devices. Nature Mater. 8, 208–212 (2009).

    Article  CAS  Google Scholar 

  3. Shultz, M. D. et al. Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology 261, 136–143 (2011).

    Article  Google Scholar 

  4. Curl, R. F. On the formation of the fullerenes. Phil. Trans. R. Soc. Lond. A 343, 19–32 (1993).

    Article  CAS  Google Scholar 

  5. Dunk, P. W. et al. Closed network growth of fullerenes. Nature Commun. 3, 855 (2012).

    Article  Google Scholar 

  6. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  7. Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A. & Khlobystov, A. N. Direct transformation of graphene to fullerene. Nature Chem. 2, 450–453 (2010).

    Article  CAS  Google Scholar 

  8. Cross, R. J. & Saunders, M. Transmutation of fullerenes. J. Am. Chem. Soc. 127, 3044–3047 (2005).

    Article  CAS  Google Scholar 

  9. Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010).

    Article  CAS  Google Scholar 

  10. Berné, O. & Tielens, A. G. G. M. F. Formation of buckminsterfullerene (C60) in interstellar space. Proc. Natl Acad. Sci. USA 109, 401–406 (2012).

    Article  Google Scholar 

  11. Li, Z., Cheng, Z., Wang, R., Li, Q. & Fang, Y. Spontaneous formation of nanostructures in graphene. Nano Lett. 9, 3599–3602 (2009).

    Article  CAS  Google Scholar 

  12. Shenoy, V. B., Reddy, C. D. & Zhang, Y.-W. Spontaneous curling of graphene sheets with reconstructed edges. ACS Nano 4, 4840–4844 (2010).

    Article  CAS  Google Scholar 

  13. Irle, S., Zheng, G., Wang, Z. & Morokuma, K. The C60 formation puzzle ‘solved’: QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J. Phys. Chem. B 110, 14531–14545 (2006).

    Article  CAS  Google Scholar 

  14. Curl, R. F., Lee, M. K. & Scuseria, G. E. C60 buckminsterfullerene high yields unraveled. J. Phys. Chem. A 112, 11951–11955 (2008).

    Article  CAS  Google Scholar 

  15. Fowler, P. W. & Manolopolous, D. E. in An Atlas of Fullerenes 2007 edn. (Dover Publications, 2007).

    Google Scholar 

  16. Murry, R. L., Strout, D. L., Odom, G. K. & Scuseria, G. E. Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation. Nature 366, 665–667 (1993).

    Article  CAS  Google Scholar 

  17. Troshin, P. A. et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18 . Science 309, 278–281 (2005).

    Article  CAS  Google Scholar 

  18. Ioffe, I. N. et al. Chlorination of C86 to C84Cl32 with nonclassical heptagon-containing fullerene cage formed by cage shrinkage. Angew. Chem. Int. Ed. 49, 4784–4787 (2010).

    Article  CAS  Google Scholar 

  19. Kroto, H. W. The stability of the fullerenes C24, C28, C32, C36, C50, C60 and C70 . Nature 329, 529–531 (1987).

    Article  CAS  Google Scholar 

  20. Wang, C. R. et al. C66 fullerene encaging a scandium dimer. Nature 408, 426–427 (2000).

    Article  CAS  Google Scholar 

  21. Stevenson, S. et al. A stable non-classical metallofullerene family. Nature 408, 427–428 (2000).

    Article  CAS  Google Scholar 

  22. Tan, Y.-Z., Xie, S.-Y., Huang, R.-B. & Zheng, L.-S. The stabilization of fused-pentagon fullerene molecules. Nature Chem. 1, 450–460 (2009).

    Article  CAS  Google Scholar 

  23. Shi, Z. Q., Wu, X., Wang, C. R., Lu, X. & Shinohara, H. Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew. Chem. Int. Ed. 45, 2107–2111 (2006).

    Article  CAS  Google Scholar 

  24. Zheng, H., Zhao, X., Wang, W.-W., Yang, T. & Nagase, S. Sc2@C70 rather than Sc2C2@C68: density functional theory characterization of metallofullerene Sc2C70 . J. Chem. Phys. 137, 014308 (2012).

    Article  Google Scholar 

  25. Zhang, J. et al. Nanoscale fullerene compression of an yttrium carbide cluster. J. Am. Chem. Soc. 134, 8487–8493 (2012).

    Article  CAS  Google Scholar 

  26. Fu, W. et al. Gd2@C79N: isolation, characterization, and monoadduct formation of a very stable heterofullerene with a magnetic spin state of S = 15/2. J. Am. Chem. Soc. 33, 9741–9750 (2011).

    Article  Google Scholar 

  27. Zhang, J. et al. Enhanced dipole moments in trimetallic nitride template endohedral metallofullerenes with the pentalene motif. J. Am. Chem. Soc. 135, 3351–3354 (2013).

    Article  CAS  Google Scholar 

  28. Yang, T., Zhao, X., Li, S.-T. & Nagase, S. Is the isolated pentagon rule always satisfied for metallic carbide endohedral fullerenes? Inorg. Chem. 51, 11223–11225 (2012).

    Article  CAS  Google Scholar 

  29. Fu, W. et al. 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40–43). J. Am. Chem. Soc. 131, 11762–11769 (2009).

    Article  CAS  Google Scholar 

  30. Yang, H. et al. Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal carbide encapsulated inside a large fullerene cage. J. Am. Chem. Soc. 130, 17296–17300 (2008).

    Article  CAS  Google Scholar 

  31. Rodriguez-Fortea, A., Alegret, N., Balch, A. L. & Poblet, J. M. The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nature Chem. 2, 955–961 (2010).

    Article  CAS  Google Scholar 

  32. Mercado, B. Q. et al. Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene—Gd3N@C s(39663)-C82 . 130, 7854–7855 (2008).

  33. Beavers, C. M. et al. Tb3N@C84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J. Am. Chem. Soc. 128, 11352–11353 (2006).

    Article  CAS  Google Scholar 

  34. Tan, Y.-Z. et al. Carbon arc production of heptagon-containing fullerene C68 . Nature Commun. 2, 420 (2011).

    Article  Google Scholar 

  35. Popov, A. A., Yang, S. & Dunsch, L. Endohedral fullerenes. Chem. Rev. 113, 5989–6113 (2013).

    Article  CAS  Google Scholar 

  36. Inoue, T. et al. Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (isomers I, II, and III). J. Phys. Chem. B 108, 7573–7579 (2004).

    Article  CAS  Google Scholar 

  37. Saha, B., Irle, S. & Morokuma, K. Hot giant fullerenes eject and capture C2 molecules: QM/MD simulations with constant density. J. Phys. Chem. C 115, 22707–22716 (2011).

    Article  CAS  Google Scholar 

  38. Xie, S. Y. et al. Capturing the labile fullerene 50 as C50Cl10 . Science 304, 699 (2004).

    Article  CAS  Google Scholar 

  39. Tan, Y.-Z. et al. An entrant of smaller fullerene: C56 captured by chlorines and aligned in linear chains. J. Am. Chem. Soc. 130, 15240–15241 (2008).

    Article  CAS  Google Scholar 

  40. Ziegler, K., Mueller, A., Amsharov, K. Y. & Jansen, M. Capturing the most-stable C56 fullerene cage by in situ chlorination. Chem. Asian J. 6, 2412–2418 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation (grants CHE-0938043 to H.C.D. and CHE-1011760 to A.L.B. and M.M.O.) and the Hollings Marine Laboratory NMR Facility. The authors also thank the Advanced Light Source, supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231) for beam time, and S.J. Teat and C.M. Beavers for assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., Y.Y. and C.D. prepared the samples. F.L.B. and M.M.O. performed the crystal study. D.W.B. performed NMR characterization. T.F. performed DFT computations. W.K.R., R.F.H. and K.H. provided mass-spectral analysis. J.Z., M.M.O., A.L.B. and H.C.D analysed the results. J.Z. and H.C.D composed the manuscript and modified it based on critical comments from M.M.O. and A.L.B. The entire project was supervised by A.L.B. and H.C.D.

Corresponding authors

Correspondence to Marilyn M. Olmstead, Alan L. Balch or Harry C. Dorn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1902 kb)

Supplementary information

Crystallographic data for Gd2C2@C1(51383)-C84•Ni(OEP)•1.75(toluene)•0.25(benzene). (PDF 1902 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Bowles, F., Bearden, D. et al. A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism. Nature Chem 5, 880–885 (2013). https://doi.org/10.1038/nchem.1748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1748

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing