Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects

Abstract

Semiconducting carbon nanotubes promise a broad range of potential applications in optoelectronics and imaging, but their photon-conversion efficiency is relatively low. Quantum theory suggests that nanotube photoluminescence is intrinsically inefficient because of low-lying ‘dark’ exciton states. Here we demonstrate the significant brightening of nanotube photoluminescence (up to 28-fold) through the creation of an optically allowed defect state that resides below the predicted energy level of the dark excitons. Emission from this new state generates a photoluminescence peak that is red-shifted by as much as 254 meV from the nanotube's original excitonic transition. We also found that the attachment of electron-withdrawing substituents to carbon nanotubes systematically drives this defect state further down the energy ladder. Our experiments show that the material's photoluminescence quantum yield increases exponentially as a function of the shifted emission energy. This work lays the foundation for chemical control of defect quantum states in low-dimensional carbon materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Controlled sp3 defects brighten dark excitons.
Figure 2: Spectrochemical evolution of exciton photoluminescence in diazonium functionalized (6,5)-SWCNTs.
Figure 3: The Raman disorder peak (D) of (6,5)-SWCNTs grows monotonically as the nanotubes react with increasing concentrations of 4-bromobenzenediazonium tetrafluoroborate.
Figure 4: Experimental evidence of dark-exciton brightening.

Similar content being viewed by others

References

  1. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  2. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  CAS  Google Scholar 

  3. Heller, D. A., Baik, S., Eurell, T. E. & Strano, M. S. Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005).

    Article  CAS  Google Scholar 

  4. Hong, G. et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nature Medicine 18, 1841–1846 (2012).

    Article  CAS  Google Scholar 

  5. Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  Google Scholar 

  6. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    Article  CAS  Google Scholar 

  7. Carlson, L. J., Maccagnano, S. E., Zheng, M., Silcox, J. & Krauss, T. D. Fluorescence efficiency of individual carbon nanotubes. Nano Lett. 7, 3698–3703 (2007).

    Article  CAS  Google Scholar 

  8. Crochet, J., Clemens, M. & Hertel, T. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007).

    Article  CAS  Google Scholar 

  9. Nozik, A. J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001).

    Article  CAS  Google Scholar 

  10. Lee, A. J. et al. Bright fluorescence from individual single-walled carbon nanotubes. Nano Lett. 11, 1636–1640 (2011).

    Article  CAS  Google Scholar 

  11. Ju, S-Y., Kopcha, W. P. & Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323, 1319–1323 (2009).

    Article  CAS  Google Scholar 

  12. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    Article  Google Scholar 

  13. Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys. Rev. B 74, 121401 (2006).

    Article  Google Scholar 

  14. Zhao, H. & Mazumdar, S. Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004).

    Article  Google Scholar 

  15. Ando, T. Effects of valley mixing and exchange on excitons in carbon nanotubes with Aharonov–Bohm flux. J. Phys. Soc. Jpn 75, 024707 (2006).

    Article  Google Scholar 

  16. Scholes, G. D. et al. Low-lying exciton states determine the photophysics of semiconducting single wall carbon nanotubes. J. Phys. Chem. C 111, 11139–11149 (2007).

    Article  CAS  Google Scholar 

  17. Peng, X. & Wong, S. S. Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21, 625–642 (2009).

    Article  CAS  Google Scholar 

  18. Karousis, N., Tagmatarchis, N. & Tasis, D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110, 5366–5397 (2010).

    Article  CAS  Google Scholar 

  19. Liu, H., Nishide, D., Tanaka, T. & Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nature Commun. 2, 309 (2011).

    Article  Google Scholar 

  20. Usrey, M. L., Lippmann, E. S. & Strano, M. S. Evidence for a two-step mechanism in electronically selective single-walled carbon nanotube reactions. J. Am. Chem. Soc. 127, 16129–16135 (2005).

    Article  CAS  Google Scholar 

  21. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  CAS  Google Scholar 

  22. Harutyunyan, H. et al. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. Nano Lett. 9, 2010–2014 (2009).

    Article  CAS  Google Scholar 

  23. Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    Article  CAS  Google Scholar 

  24. Nagatsu, K., Chiashi, S., Konabe, S. & Homma, Y. Brightening of triplet dark excitons by atomic hydrogen adsorption in single-walled carbon nanotubes observed by photoluminescence spectroscopy. Phys. Rev. Lett. 105, 157403 (2010).

    Article  Google Scholar 

  25. Kilina, S., Ramirez, J. & Tretiak, S. Brightening of the lowest exciton in carbon nanotubes via chemical functionalization. Nano Lett. 12, 2306–2312 (2012).

    Article  CAS  Google Scholar 

  26. Zhang, Y. et al. Propagative sidewall alkylcarboxylation that induces red-shifted near-IR photoluminescence in single-walled carbon nanotubes. J. Phys. Chem. Lett. 4, 826–830 (2013).

    Article  CAS  Google Scholar 

  27. Deng, S. et al. Confined propagation of covalent chemical reactions on single-walled carbon nanotubes. Nature Commun. 2, 382 (2011).

    Article  Google Scholar 

  28. Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Raman spectroscopy of carbon nanotubes in 1997 and 2007. J. Phys. Chem. C 111, 17887–17893 (2007).

    Article  CAS  Google Scholar 

  29. Torrens, O. N., Zheng, M. & Kikkawa, J. M. Energy of K-momentum dark excitons in carbon nanotubes by optical spectroscopy. Phys. Rev. Lett. 101, 157401 (2008).

    Article  CAS  Google Scholar 

  30. Blackburn, J. L., Holt, J. M., Irurzun, V. M., Resasco, D. E. & Rumbles, G. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes. Nano Lett. 12, 1398–1403 (2012).

    Article  CAS  Google Scholar 

  31. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  32. Brédas, J. L. & Heeger, A. J. Influence of donor and acceptor substituents on the electronic characteristics of poly(paraphenylene vinylene) and poly(paraphenylene). Chem. Phys. Lett. 217, 507–512 (1994).

    Article  Google Scholar 

  33. Ramirez, J., Mayo, M. L., Kilina, S. & Tretiak, S. Electronic structure and optical spectra of semiconducting carbon nanotubes functionalized by diazonium salts. Chem. Phys. 413, 89–101 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Brozena and J. Fourkas for helpful discussions and K. Gaskell for assistance with XPS experiments. This work was partially supported by the University of Maryland, the Office of Naval Research (N000141110465) and the National Science Foundation (CAREER CHE-1055514). G.C.S. and N.V. acknowledge support from ARO MURI grant #W911NF-09-1-0541.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and Y.P. conceived and designed the experiments. Y.P., B.M., L.R.P. and H.K. performed experiments. N.V. and G.C.S. performed DFT calculations. Y.W., Y.P. and G.C.S. wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to YuHuang Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao, Y., Meany, B., Powell, L. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nature Chem 5, 840–845 (2013). https://doi.org/10.1038/nchem.1711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing