Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths

Abstract

The spectral linewidth of an ensemble of fluorescent emitters is dictated by the combination of single-emitter linewidths and sample inhomogeneity. For semiconductor nanocrystals, efforts to tune ensemble linewidths for optical applications have focused primarily on eliminating sample inhomogeneities, because conventional single-molecule methods cannot reliably build accurate ensemble-level statistics for single-particle linewidths. Photon-correlation Fourier spectroscopy in solution (S-PCFS) offers a unique approach to investigating single-nanocrystal spectra with large sample statistics and high signal-to-noise ratios, without user selection bias and at fast timescales. With S-PCFS, we directly and quantitatively deconstruct the ensemble linewidth into contributions from the average single-particle linewidth and from sample inhomogeneity. We demonstrate that single-particle linewidths vary significantly from batch to batch and can be synthetically controlled. These findings delineate the synthetic challenges facing underdeveloped nanomaterials such as InP and InAs core–shell particles and introduce new avenues for the synthetic optimization of fluorescent nanoparticles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Demonstration of S-PCFS data analysis.
Figure 3: Comparison of different core materials' composition.
Figure 4: Comparison of samples with CdSe cores.

References

  1. 1

    Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Greytak, A. B. et al. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem. Sci. 3, 2028–2034 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    CAS  Article  Google Scholar 

  4. 4

    Wang, X. et al. Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Steckel, J. S. et al. Color-saturated green-emitting QD-LEDs. Angew. Chem. Int. Ed. 45, 5796–5799 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Tang, J. & Sargent, E. H. Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. Adv. Mater. 23, 12–29 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Eisler, H-J. et al. Color-selective semiconductor nanocrystal laser. Appl. Phys. Lett. 80, 4614–4616 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Bawendi, M. G., Steigerwald, M. L. & Brus, L. E. The quantum mechanics of larger semiconductor clusters (‘quantum dots'). Annu. Rev. Phys. Chem. 41, 477–496 (1990).

    CAS  Article  Google Scholar 

  11. 11

    Moerner, W. E. & Fromm, D. P. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Empedocles, S. A., Neuhauser, R., Shimizu, K. T. & Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243–1256 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Gómez, D. E., Califano, M. & Mulvaney, P. Optical properties of single semiconductor nanocrystals. Phys. Chem. Chem. Phys. 8, 4989–5011 (2006).

    Article  Google Scholar 

  14. 14

    Gómez, D. E., van Embden, J. & Mulvaney, P. Spectral diffusion of single semiconductor nanocrystals: The influence of the dielectric environment. Appl. Phys. Lett. 88, 154106 (2006).

    Article  Google Scholar 

  15. 15

    Brokmann, X., Bawendi, M., Coolen, L. & Hermier, J-P. Photon-correlation Fourier spectroscopy. Opt. Express 14, 6333–6341 (2006).

    Article  Google Scholar 

  16. 16

    Brokmann, X., Marshall, L. F. & Bawendi, M. G. Revealing single emitter spectral dynamics from intensity correlations in an ensemble fluorescence spectrum. Opt. Express 17, 4509–4517 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Marshall, L. F., Cui, J., Brokmann, X. & Bawendi, M. G. Extracting spectral dynamics from single chromophores in solution. Phys. Rev. Lett. 105, 053005 (2010).

    Article  Google Scholar 

  18. 18

    Coolen, L., Brokmann, X., Spinicelli, P. & Hermier, J-P. Emission characterization of a single CdSe–ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy. Phys. Rev. Lett. 100, 027403 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Banin, U., Cerullo, G., Guzelian, A. & Bardeen, C. Quantum confinement and ultrafast dephasing dynamics in InP nanocrystals. Phys. Rev. B 55, 7059–7067 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Kim, S. et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J. Am. Chem. Soc. 134, 3804–3809 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Allen, P. M. et al. InAs(ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J. Am. Chem. Soc. 132, 470–471 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Reiss, P., Protière, M. & Li, L. Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Aharoni, A., Mokari, T., Popov, I. & Banin, U. Synthesis of InAs/CdSe/ZnSe core/shell1/shell2 structures with bright and stable near-infrared fluorescence. J. Am. Chem. Soc. 128, 257–264 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Johnson, I. & Spence, M. T. Z. (eds) Molecular Probes Handbook, A Guide to Fluorescent Probes and Labeling Technologies 11th edn (Life Technologies, 2010).

    Google Scholar 

  25. 25

    Nguyen, D. T. et al. Excitonic homogeneous broadening in single-wall carbon nanotubes. Chem. Phys. 413, 102–111 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Empedocles, S. A. & Bawendi, M. G. Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826–1830 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Kelley, A. M. Electron–phonon coupling in CdSe nanocrystals. J. Phys. Chem. Lett. 1, 1296–1300 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Sagar, D. et al. Size dependent, state-resolved studies of exciton–phonon couplings in strongly confined semiconductor quantum dots. Phys. Rev. B 77, 235321 (2008).

    Article  Google Scholar 

  29. 29

    Salvador, M. R., Hines, M. A. & Scholes, G. D. Exciton–bath coupling and inhomogeneous broadening in the optical spectroscopy of semiconductor quantum dots. J. Chem. Phys. 118, 9380–9388 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Salvador, M. R., Graham, M. W. & Scholes, G. D. Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. J. Chem. Phys. 125, 184709 (2006).

    Article  Google Scholar 

  31. 31

    Chernikov, A. et al. Phonon-assisted luminescence of polar semiconductors: Fröhlich coupling versus deformation-potential scattering. Phys. Rev. B 85, 035201 (2012).

    Article  Google Scholar 

  32. 32

    Brovelli, S. et al. Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals. Nature Commun. 2, 280 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nature Mater. 12, 445–451 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Haustein, E. & Schwille, P. Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (award no. DE-FG02-07ER46454) and by the National Institutes of Health through the MIT Laser Biomedical Resource Center (award no. P41EB015871-26A1). J.C. acknowledges support from the National Science Foundation Graduate Research Fellowship Program. D.D.W. acknowledges support from the Fannie and John Hertz Foundation. The authors thank QD Vision for providing the InP core–shell sample and J. Cordero for help with synthesis.

Author information

Affiliations

Authors

Contributions

J.C., L.F.M., X.B. and M.G.B. conceived and designed the experiments. J.C. performed the S-PCFS experiments. O.C. and D.K.H. synthesized the CdSe–CdS and InAs–ZnS nanoparticles. D.D.W. and O.C. performed TEM. J.C. and A.P.B. analysed the data with guidance from L.F.M., X.B. and M.G.B. The manuscript was written by J.C. and A.P.B. with contributions from all authors.

Corresponding author

Correspondence to Moungi G. Bawendi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3456 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cui, J., Beyler, A., Marshall, L. et al. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nature Chem 5, 602–606 (2013). https://doi.org/10.1038/nchem.1654

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing