Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prebiotic synthesis of simple sugars by photoredox systems chemistry

Abstract

A recent synthesis of activated pyrimidine ribonucleotides under prebiotically plausible conditions relied on mixed oxygenous and nitrogenous systems chemistry. As it stands, this synthesis provides support for the involvement of RNA in the origin of life, but such support would be considerably strengthened if the sugar building blocks for the synthesis—glycolaldehyde and glyceraldehyde—could be shown to derive from one carbon feedstock molecules using similarly mixed oxygenous and nitrogenous systems chemistry. Here, we show that these sugars can be formed from hydrogen cyanide by ultraviolet irradiation in the presence of cyanometallates in a remarkable systems chemistry process. Using copper cyanide complexes, the process operates catalytically to disproportionate hydrogen cyanide, first generating the sugars and then sequestering them as simple derivatives.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Homologation routes to simple sugars from formaldehyde 1.
Figure 2: Photoredox cycling of copper cyanide complexes in the presence of hydrogen cyanide 5.
Figure 3: 13C-NMR analysis of the organic intermediates and products formed by the photoredox cycling of copper cyanide complexes in the presence of hydrogen cyanide 5.
Figure 4: 1H-NMR analysis of photochemical products.
Figure 5: Disproportionation of hydrogen cyanide 5 and ensuing systems chemistry.

References

  1. Woese, C. The Genetic Code 179–195 (Harper & Row, 1967).

  2. Crick, F. H. C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).

    Article  CAS  Google Scholar 

  3. Orgel, L. E. Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968).

    Article  CAS  Google Scholar 

  4. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    CAS  Google Scholar 

  5. Szostak, J. W. Systems chemistry on early Earth. Nature 459, 171–172 (2009).

    Article  CAS  Google Scholar 

  6. Butlerow, A. Bildung einer zuckerartigen substanz durch synthese. Liebigs Ann. Chem. 120, 295–298 (1861).

    Article  Google Scholar 

  7. Miller, S. L. & Orgel, L. E. The Origins of Life on the Earth 109–112 (Prentice-Hall, 1974).

  8. Ricardo, A., Carrigan, M. A., Olcott, A. N. & Benner, S. A. Borate minerals stabilize ribose. Science 303, 196 (2004).

    Article  CAS  Google Scholar 

  9. Breslow, R. & Cheng, Z.-L. On the origin of terrestrial homochirality for nucleosides and amino acids. Proc. Natl Acad. Sci. USA 106, 9144–9146 (2009).

    Article  CAS  Google Scholar 

  10. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

    Article  Google Scholar 

  11. Socha, R. F., Weiss, A. H. & Sakharov, M. M. Homogeneously catalyzed condensation of formaldehyde to carbohydrates: VII. An overall formose reaction model. J. Catal. 67, 207–217 (1981).

    Article  CAS  Google Scholar 

  12. Decker, P., Schweer, H. & Pohlmann, R. Bioids: X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography–mass spectrometry of n-butoxime trifluoroacetates on OV-225 J. Chromatogr. A 244, 281–291 (1982).

    Article  CAS  Google Scholar 

  13. Shapiro, R. Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosphere 18, 71–85 (1988).

    Article  CAS  Google Scholar 

  14. Eschenmoser, A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. Angew. Chem. Int. Ed. 50, 12412–12472 (2011).

    Article  CAS  Google Scholar 

  15. Fischer, E. Reduction von säuren der Zuckergruppe. Ber. Dtsch Chem. Ges. 22, 2204–2205 (1889).

    Article  CAS  Google Scholar 

  16. Morrison, J. D. & Mosher, H. S. Asymmetric Organic Reactions 133–141 (Prentice-Hall, 1971).

  17. Serianni, A. S., Clark, E. L. & Barker, R. Carbon-13-enriched carbohydrates. Preparation of erythrose, threose, glyceraldehyde, and glycolaldehyde with 13C-enrichment in various carbon atoms. Carbohydr. Res. 72, 79–91 (1979).

    Article  CAS  Google Scholar 

  18. Schlesinger, G. & Miller, S. L. Equilibrium and kinetics of glyconitrile formation in aqueous solution. J. Am. Chem. Soc. 95, 3729–3735 (1973).

    Article  CAS  Google Scholar 

  19. Eschenmoser, A. & Loewenthal, E. Chemistry of potentially prebiological natural products. Chem. Soc. Rev. 21, 1–16 (1992).

    Article  CAS  Google Scholar 

  20. Ferris, J. P. & Hagan, W. J. Jr. HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40, 1093–1120 (1984).

    Article  CAS  Google Scholar 

  21. Donn, B. Comets: chemistry and chemical evolution. J. Mol. Evol. 18, 157–160 (1982).

    Article  CAS  Google Scholar 

  22. Tokunaga, A. T., Beck, S. C., Geballe, T. R., Lacey, J. H. & Serabyn, E. The detection of HCN on Jupiter. Icarus 48, 283–289 (1981).

    Article  CAS  Google Scholar 

  23. Hanel R. et al. Infrared observations of the Saturnian system from Voyager 1. Science 212, 192–200 (1981).

    Article  CAS  Google Scholar 

  24. Snyder, L. E. & Buhl, D. Observations of radio emission from interstellar hydrogen cyanide. Astrophys. J. Lett. 163, L47–L52 (1971).

    Article  CAS  Google Scholar 

  25. Strecker, A. Ueber einen neuen aus aldehyd-ammoniak und blausäure entstehenden Körpe. Liebigs Ann. Chem. 91, 349–351 (1854).

    Article  Google Scholar 

  26. Oró, J. Synthesis of adenine from hydrogen cyanide. Biochem. Biophys. Res. Commun. 2, 407–412 (1960).

    Article  Google Scholar 

  27. Niketić, V., Draganić, Z. D., Nešković, S., Jovanović, S. & Draganić, I. G. Radiolysis of aqueous solutions of hydrogen cyanide (pH ~ 6): compounds of interest in chemical evolution studies. J. Mol. Evol. 19, 184–191 (1983).

    Article  Google Scholar 

  28. Hartman, H. Speculations on the origin and evolution of metabolism. J. Mol. Evol. 4, 359–370 (1975).

    Article  CAS  Google Scholar 

  29. Adamson, A. W. et al. Photochemistry of transition metal coordination compounds. Chem. Rev. 68, 541–585 (1968).

    Article  CAS  Google Scholar 

  30. Orgel L. E. in The Origin of Life and Evolutionary Biochemistry (eds Dose, K., Fox, S. W., Deborin, G. A. & Pavlovskaya, T. E.) 369–371 (Plenum, 1974).

  31. Arrhenius, T., Arrhenius, G. & Paplawsky, W. Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin. Orig. Life Evol. Biosphere 24, 1–17 (1994).

    Article  CAS  Google Scholar 

  32. Keefe, A. D. & Miller, S. L. Was ferrocyanide a prebiotic reagent? Orig. Life Evol. Biosphere 26, 111–129 (1996).

    Article  CAS  Google Scholar 

  33. Horváth, A., Papp, S. & Décsy, Z. Formation of aquated electrons and the individual quantum yields for photoactive species in the Cu(I)–KCN–H2O system. J. Photochem. 24, 331–339 (1984).

    Article  Google Scholar 

  34. Katagiri, A., Yoshimura, S. & Yoshizawa, S. Formation constant of the tetracyanocuprate(II) ion and the mechanism of its decomposition. Inorg. Chem. 20, 4143–4147 (1981).

    Article  CAS  Google Scholar 

  35. Tavernier, D., Van Damme, S., Ricquier, P. & Anteunis, M. J. O. A convenient preparation of 3H-1,3-oxazol-2-one and its N-formyl derivative. Bull. Soc. Chim. Belg. 97, 859–865 (1988).

    Article  CAS  Google Scholar 

  36. Kovács, J., Pintér, I., Lendering, U. & Köll, P. Transformation of aldoses into glycosylamine 1,2-(cyclic carbamates) (glyco-oxazolidin-2-ones) by reaction with potassium cyanate. Carbohydr. Res. 210, 155–166 (1991).

    Article  Google Scholar 

  37. Behar, D. & Fessenden, R. W. An electron spin resonance investigation of the reactions in irradiated aqueous solutions of hydrogen cyanide and the cyanide ion. J. Phys. Chem. 76, 3945–3950 (1972).

    Article  CAS  Google Scholar 

  38. Moutou, G. et al. Equilibrium of α-aminoacetonitrile formation from formaldehyde, hydrogen cyanide and ammonia in aqueous solution: industrial and prebiotic significance. J. Phys. Org. Chem. 8, 721–730 (1995).

    Article  CAS  Google Scholar 

  39. Wang, Y. L., Lee, H. D., Beach, M. W. & Margerum, D. W. Kinetics of base hydrolysis of cyanogen and 1-cyanoformamide. Inorg. Chem. 26, 2444–2449 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Engineering and Physical Sciences Research Council through the provision of a postdoctoral fellowship (to D.R.) and by the Medical Research Council (project no. MC_UP_A024_1009). The authors thank S. Freund and T. Rutherford for assistance with NMR spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

J.D.S. and D.R. conceived and designed the experiments. D.R. performed the experiments. J.D.S. and D.R. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to John D. Sutherland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 0 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ritson, D., Sutherland, J. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nature Chem 4, 895–899 (2012). https://doi.org/10.1038/nchem.1467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing