Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-way switching in a cyanide-bridged [CoFe] chain

Abstract

Bistable compounds that exist in two interchangeable phases under identical conditions can act as switches under external stimuli. Among such switchable materials, coordination complexes have energy levels (or phases) that are determined by the electronic states of their constituent metal ions and ligands. They can exhibit multiple bistabilities and hold promise in the search for multifaceted materials that display different properties in different phases, accessible through the application of contrasting external stimuli. Molecular systems that exhibit both thermo- and photoinduced magnetic bistabilities are excellent candidates for such systems. Here we describe a cyanide-bridged [CoFe] one-dimensional chiral coordination polymer that displays both magnetic and electric bistabilities in the same temperature range. Both the electric and magnetic switching probably arise from the same electron-transfer coupled spin-transition phenomenon, which enables the reversible conversion between an insulating diamagnetic phase and either a semiconducting paramagnetic (thermoinduced) or a type of ferromagnetic single-chain magnet (photoinduced) state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The heterometallic cyanide-bridged [CoFe] complex 1 with a square-wave type of structure.
Figure 2: Magnetic susceptibility data collected for 1·3H2O (red) and 1·H2O (blue) above 240 K.
Figure 3: Mössbauer spectra of 1·H2O at 293 K (top) and 265 K (middle), and of 1·3H2O at 20 K (bottom).
Figure 4: Light-induced magnetic susceptibility data of 1·H2O.
Figure 5: Temperature dependences of the d.c. conductivity (red) and magnetic susceptibility (blue) of 1·H2O in the thermal ETCST region.
Figure 6: Dielectric constant (ɛ′) and dielectric loss (ɛ′′) versus frequency plots (f = 500 Hz to 1 MHz) of 1·H2O measured between 310 and 255 K.

Similar content being viewed by others

References

  1. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  2. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  3. Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).

    Article  CAS  Google Scholar 

  4. Létard, J-F. et al. Light induced excited pair spin state in an iron(II) binuclear spin-crossover compound. J. Am. Chem. Soc. 121, 10630–10631 (1999).

    Article  Google Scholar 

  5. Ito, A., Suenaga, M. & Ôno, K. Mössbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull's blue. J. Chem. Phys. 48, 3597–3599 (1968).

    Article  CAS  Google Scholar 

  6. Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    Article  CAS  Google Scholar 

  7. Coronado, E. et al. Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate. J. Am. Chem. Soc. 127, 4580–4581 (2005).

    Article  CAS  Google Scholar 

  8. Kosaka, W., Nomura, K., Hashimoto, K. & Ohkoshi, S. Observation of an Fe(II) spin-crossover in a cesium iron hexacyanochromate. J. Am. Chem. Soc. 127, 8590–8591 (2005).

    Article  CAS  Google Scholar 

  9. Ohkoshi, S. et al. Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate. Angew. Chem. Int. Ed. 46, 3238–3241 (2007).

    Article  CAS  Google Scholar 

  10. Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. Photoinduced magnetization of a cobalt–iron cyanide. Science 272, 704–705 (1996).

    Article  CAS  Google Scholar 

  11. Bleuzen, A. et al. Photoinduced ferrimagnetic systems in Prussian blue analogues CIxCo4[Fe(CN)6]y (CI=alkali cation). 1. Conditions to observe the phenomenon. J. Am. Chem. Soc. 122, 6648–6652 (2000).

    Article  CAS  Google Scholar 

  12. Bleuzen, A., Marvaud, V., Mathonière, C., Sieklucka, B. & Verdaguer, M. Photomagnetism in clusters and extended molecule-based magnets. Inorg. Chem. 48, 3453–3466 (2009).

    Article  CAS  Google Scholar 

  13. Herrera, J. M. et al. Reversible photoinduced magnetic properties in the heptanuclear complex [MoIV(CN)2(CN–CuL)6]8+: a photomagnetic high-spin molecule. Angew. Chem. Int. Ed. 43, 5468–5471 (2004).

    Article  CAS  Google Scholar 

  14. Shimamoto, N., Ohkoshi, S., Sato, O. & Hashimoto, K. Control of charge-transfer-induced spin transition temperature on cobalt–iron Prussian blue analogues. Inorg. Chem. 41, 678–684 (2002).

    Article  CAS  Google Scholar 

  15. Newton, G. N., Nihei, M. & Oshio, H. Cyanide-bridged molecular squares – the building units of Prussian blue. Eur. J. Inorg. Chem. 3031–3042 (2011).

  16. Sokol, J. L., Hee, A. G. & Long, J. L. A cyano-bridged single-molecule magnet: slow magnetic relaxation in a trigonal prismatic MnMo6(CN)18 cluster. J. Am. Chem. Soc. 124, 7656–7657 (2002).

    Article  CAS  Google Scholar 

  17. Li, D. et al. Single-molecule magnets constructed from cyanometalates: {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2}·2DMF (M(II) Co, Ni). Inorg. Chem. 44, 4903–4905 (2005).

    Article  CAS  Google Scholar 

  18. Hoshino, N., Sekine, Y., Nihei, M. & Oshio, H. Achiral single molecule magnet and chiral single chain magnet. Chem. Commun. 46, 6117–6119 (2010).

    Article  CAS  Google Scholar 

  19. Lescouëzec, R. et al. Cyanide-bridged iron(III)–cobalt(II) double zigzag ferromagnetic chains: two new molecular magnetic nanowires. Angew. Chem. Int. Ed. 42, 1483–1486 (2003).

    Article  Google Scholar 

  20. Park, K. & Holmes, S. M. Exchange coupling and contribution of induced orbital angular momentum of low-spin Fe3+ ions to magnetic anisotropy in cyanide-bridged Fe2M2 molecular magnets: spin-polarized density-functional calculations. Phys. Rev. B 74, 224440-1-10 (2006).

    Google Scholar 

  21. Liu, T., Zhang, Y-J., Kanegawa, S. & Sato, O. Photoinduced metal-to-metal charge transfer toward single-chain magnet. J. Am. Chem. Soc. 132, 8250–8251 (2010).

    Article  CAS  Google Scholar 

  22. Berlinguette, C. P. et al. A charge-transfer-induced spin transition in the discrete cyanide-bridged complex {[Co(tmphen)2]3[Fe(CN)6]2}. J. Am. Chem. Soc. 126, 6222–6223 (2004).

    Article  CAS  Google Scholar 

  23. Berlinguette, C. P. et al. A charge-transfer-induced spin transition in a discrete complex: the role of extrinsic factors in stabilizing three electronic isomeric forms of a cyanide-bridged Co/Fe cluster. J. Am. Chem. Soc. 127, 6766–6779 (2005).

    Article  CAS  Google Scholar 

  24. Li, D. et al. Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular cobalt–iron Prussian blue analogue. J. Am. Chem. Soc. 130, 252–258 (2008).

    Article  CAS  Google Scholar 

  25. Zhang, Y. et al. Reversible thermally and photoinduced electron transfer in a cyano-bridged {Fe2Co2} square complex. Angew. Chem. Int. Ed. 49, 3752–3756 (2010).

    Article  CAS  Google Scholar 

  26. Nihei, M., Sekine, Y., Suganami, N. & Oshio, H. Thermally two-stepped spin transitions induced by intramolecular electron transfers in a cyanide-bridged molecular square. Chem. Lett. 39, 978–979 (2010).

    Article  CAS  Google Scholar 

  27. Nihei, M. et al. Controlled intramolecular electron transfers in cyanide-bridged molecular squares by chemical modifications and external stimuli. J. Am. Chem. Soc. 133, 3592–3600 (2011).

    Article  CAS  Google Scholar 

  28. Itkis, M. E., Chi, X., Cordes, A. W. & Haddon R. C. Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science 296, 1443–1445 (2002).

    Article  CAS  Google Scholar 

  29. Sato, O. et al. Electric-field-induced conductance switching in FeCo Prussian blue analogues. J. Am. Chem. Soc. 126, 13176–13177 (2004).

    Article  CAS  Google Scholar 

  30. Mahfoud, H. et al. Electric-field-induced charge-transfer phase transition: a promising approach toward electrically switchable devices. J. Am. Chem. Soc. 131, 15049–15054 (2009).

    Article  CAS  Google Scholar 

  31. Dhenaut, C. et al. Chiral metal complexes with large octupolar optical nonlinearities. Nature 374, 339–342 (1995).

    Article  CAS  Google Scholar 

  32. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  33. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  CAS  Google Scholar 

  34. Train, C. et al. Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nature Mater. 7, 729–734 (2008).

    Article  CAS  Google Scholar 

  35. Kim, J. et al. Synthesis of a cyano-bridged Fe2Mn linear unit and a Fe2Mn2 square unit by using the [fac-Fe{HB(pz)3}(CN)3] building block. Polyhedron 23, 1333–1339 (2004).

    Article  CAS  Google Scholar 

  36. Huang, H., Okuno, T., Tsuda, K., Yoshimura, M. & Kitamura, M. Enantioselective hydrogenation of aromatic ketones catalyzed by Ru complexes of Goodwin–Lions-type sp2N/sp3N hybrid ligands R-BINAN-R′-Py. J. Am. Chem. Soc. 128, 8716–8717 (2006).

    Article  CAS  Google Scholar 

  37. Mitsumoto, K. et al. Cyanide-bridged [Fe8M6] clusters displaying single-molecule magnetism (M=Ni) and electron-transfer-coupled spin transitions (M=Co). Chem. Eur. J. 17, 9612–9618 (2011).

    Article  CAS  Google Scholar 

  38. Guo, Y. N. et al. Two-step relaxation in a linear tetranuclear dysprosium(III) aggregate showing single-molecule magnet behavior. J. Am. Chem. Soc. 132, 8538–8539 (2010).

    Article  CAS  Google Scholar 

  39. Toma, L. M., Ruiz-Pérez, C., Lloret, F. & Julve M. Slow relaxation of the magnetization in a 4,2-wavelike Fe(III)2Co(II) heterobimetallic chain. Inorg. Chem. 51, 1216–1218 (2012).

    Article  CAS  Google Scholar 

  40. Tennakone, K. & Dharmaratne, W. G. D. Experimental and theoretical study of electronic conduction in H2O-doped Prussian blue. J. Phys. C 16, 5633–5639 (1983).

    Article  CAS  Google Scholar 

  41. Ohkoshi, S., Nuida, T., Matsuda, T., Tokoro, H. & Hashimoto K. The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry. J. Mater. Chem. 15, 3291–3295 (2005).

    Article  CAS  Google Scholar 

  42. Molnár, G., Cobo, S., Mahfoud, T., Vertelman, E. J. M. & van Koningsbruggen, P. J. Interplay between the charge transport phenomena and the charge-transfer phase transition in RbxMn[Fe(CN)6]y·zH2O. J. Phys. Chem. C 113, 2586–2593 (2009).

    Article  Google Scholar 

  43. Macedo, P. B., Moynihan, C. T. & Bose, R. The role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glasses 13, 171–179 (1972).

    CAS  Google Scholar 

  44. Abdul Abu Bakr, North, A. M. & Kossmehl, G. Charge carrier hopping in poly(arylene vinylenes). Eur. Polym. J. 13, 799–803 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (‘Coordination Programming’ Area 2107, No. 21108006) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a research grant (No. 10K0028) from KEK.

Author information

Authors and Affiliations

Authors

Contributions

H.O. conceived and supervised the project. N.H., F.I. and N.Y. planned and implemented the synthetic and analytical experiments. G.N.N. finalized the X-ray data, helped with the analysis and wrote the manuscript. T.S. helped plan, implement and interpret the magnetic studies. H.N. performed conductivity and permittivity measurements. A.N., R.K. and Y.M. performed the synchrotron X-ray data collections.

Corresponding author

Correspondence to Hiroki Oshio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3143 kb)

Supplementary information

Crystallographic data for LT1 phase, Mo Kalpha source (CIF 23 kb)

Supplementary information

Crystallographic data for LT1 phase, synchrotron source (CIF 23 kb)

Supplementary information

Crystallographic data for HT1 phase, Mo Kalpha source (CIF 26 kb)

Supplementary information

Crystallographic data for LT2 phase, Mo Kalpha source (CIF 23 kb)

Supplementary information

Crystallographic data for HT2 phase, Mo Kalpha source (CIF 25 kb)

Supplementary information

Crystallographic data for chiral chain (1), synchrotron source (CIF 24 kb)

Supplementary information

Crystallographic data for the product obtained with a racemic mixture of ligands, Mo Kalpha source (CIF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshino, N., Iijima, F., Newton, G. et al. Three-way switching in a cyanide-bridged [CoFe] chain. Nature Chem 4, 921–926 (2012). https://doi.org/10.1038/nchem.1455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1455

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing