Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions

Abstract

Radical reactions are a powerful class of chemical transformations. However, the formation of radical species to initiate these reactions has often required the use of stoichiometric amounts of toxic reagents, such as tributyltin hydride. Recently, the use of visible-light-mediated photoredox catalysis to generate radical species has become popular, but the scope of these radical precursors has been limited. Here, we describe the identification of reaction conditions under which photocatalysts such as fac-Ir(ppy)3 can be utilized to form radicals from unactivated alkyl, alkenyl and aryl iodides. The generated radicals undergo reduction via hydrogen atom abstraction or reductive cyclization. The reaction protocol utilizes only inexpensive reagents, occurs under mild reaction conditions, and shows exceptional functional group tolerance. Reaction efficiency is maintained upon scale-up and decreased catalyst loading, and the reaction time can be significantly shortened when the reaction is performed in a flow reactor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visible-light-active photocatalysts and representative examples of compounds capable of undergoing radical reductive cleavage.
Figure 2: The reduction protocol allows for simultaneous scale-up and lower catalyst loading, and reaction times are shortened when the reaction is run in a flow reactor.
Figure 3: Experimental evidence for proposed mechanistic pathway.

Similar content being viewed by others

References

  1. Alonso, F., Beletskaya, I. P. & Yus, M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 102, 4009–4091 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Bailey, W. F. & Patricia, J. J. The mechanism of the lithium halogen interchange reaction—a review of the literature. J. Organomet. Chem. 352, 1–46 (1988).

    Article  CAS  Google Scholar 

  3. Knochel, P. et al. Highly functionalized organomagnesium reagents prepared through halogen–metal exchange. Angew. Chem. Int. Ed. 42, 4302–4320 (2003).

    Article  CAS  Google Scholar 

  4. Yoon, N. M. Selective reduction of organic compounds with aluminum and boron hydrides. Pure Appl. Chem. 68, 843–848 (1996).

    Article  CAS  Google Scholar 

  5. Chen, J. et al. A practical palladium catalyzed dehalogenation of aryl halides and α-haloketones. Tetrahedron 63, 4266–4270 (2007).

    Article  CAS  Google Scholar 

  6. Curran, D. P. & Rakiewicz, D. M. Tandem radical approach to linear condensed cyclopentanoids. Total synthesis of (±)-hirsutene. J. Am. Chem. Soc. 107, 1448–1449 (1985).

    Article  CAS  Google Scholar 

  7. Depew, K. M. et al. Total synthesis of 5-N-acetylardeemin and amauromine: practical routes to potential MDR reversal agents. J. Am. Chem. Soc. 121, 11953–11963 (1999).

    Article  CAS  Google Scholar 

  8. Kim, J., Ashenhurst, J. A. & Movassaghi, M. Total synthesis of (+)-11,11′-dideoxyverticillin A. Science 324, 238–241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neumann, W. P. Tri-n-butyltin hydride as reagent in organic synthesis. Synthesis 665–683 (1987).

    Article  Google Scholar 

  10. Sanchez, J. & Myers, T. N. Kirk-Othmer Encyclopedia of Chemical Technology 4th edn, 431–460 (Wiley, 2000).

    Google Scholar 

  11. Krief, A. & Laval, A-M. Coupling of organic halides with carbonyl compounds promoted by SmI2, the Kagan reagent. Chem. Rev. 99, 745–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Miura, K. et al. Triethylborane-induced hydrodehalogenation of organic halides by tin hydrides. Bull. Chem. Soc. Jpn 62, 143–147 (1989).

    Article  CAS  Google Scholar 

  13. Medeiros, M. R., Schacherer, L. N., Spiegel, D. A. & Wood, J. L. Expanding the scope of trialkylborane/water-mediated radical reactions. Org. Lett. 9, 4427–4429 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Murphy, J. A., Khan, T. A., Zhou, S. Z., Thomson, D. W. & Mahesh, M. Highly efficient reduction of unactivated aryl and alkyl iodides by a ground-state neutral organic electron donor. Angew. Chem. Int. Ed. 44, 1356–1360 (2005).

    Article  CAS  Google Scholar 

  15. Cahard, E. et al. Electron transfer to benzenes by photoactivated neutral organic electron donor molecules. Angew. Chem. Int. Ed. 51, 3673–3676 (2012).

    Article  CAS  Google Scholar 

  16. Weiss, M. E., Kreis, L. M., Lauber, A. & Carreira E. M. Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew. Chem. Int. Ed. 50, 11125–11128 (2011).

    Article  CAS  Google Scholar 

  17. Ueng, S. H., Fensterbank, L., Lacôte, E., Malacria, M. & Curran, D. P. Radical reductions of alkyl halides bearing electron withdrawing groups with N-heterocyclic carbene boranes. Org. Biomol. Chem. 9, 3415–3420 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Spiegel, D. A., Wiberg, K. B., Schacherer, L. N., Medeiros, M. R. & Wood, J. L. Deoxygenation of alcohols employing water as the hydrogen atom source. J. Am. Chem. Soc. 127, 12513–12515 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Gansäuer, A. et al. H2O activation for hydrogen-atom transfer: correct structures and revised mechanisms. Angew. Chem. Int. Ed. 51, 3266–3270 (2012).

    Article  CAS  Google Scholar 

  20. Neumann, M., Füldner, S., König, B. & Zeitler, K. Metal-free, cooperative asymmetric organophotoredox catalysis with visible light. Angew. Chem. Int. Ed. 50, 951–954 (2011).

    Article  CAS  Google Scholar 

  21. Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Furst, L., Narayanam, J. M. R. & Stephenson, C. R. J. Total synthesis of (+)-gliocladin C enabled by visible light photoredox catalysis. Angew. Chem. Int. Ed. 50, 9655–9659 (2011).

    Article  CAS  Google Scholar 

  23. Tucker, J. W., Narayanam, J. M. R., Krabbe, S. W. & Stephenson, C. R. J. Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org. Lett. 12, 368–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Furst, L., Matsuura, B. S., Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Visible light-mediated intermolecular C–H functionalization of electron-rich heterocycles with malonates. Org. Lett. 12, 3104–3107 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen, J. D., Tucker, J. W., Konieczynska, M. D. & Stephenson, C. R. J. Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J. Am. Chem. Soc. 133, 4160–4163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagib, D. A., Scott, M. E. & MacMillan, D. W. C. Enantioselective α-trifluoromethylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 131, 10875–10877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai, C., Narayanam, J. M. R. & Stephenson, C. R. J. Visible light mediated conversion of alcohols to halides. Nature Chem. 3, 140–145 (2011).

    Article  CAS  Google Scholar 

  28. Freeman, D. B., Furst, L., Condie, A. G. & Stephenson, C. R. J. Functionally diverse nucleophilic trapping of iminium intermediates generated utilizing visible light. Org. Lett. 14, 94–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Shih, H. W., Vander Wal, M. N., Grange, R. L. & MacMillan, D. W. C. Enantioselective α-benzylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 132, 13600–13603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nicewicz, D. A. & MacMillan D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tucker, J. W. & Stephenson, C. R. J. Tandem visible light-mediated radical cyclization-divinylcyclopropane rearrangement to tricyclic pyrrolidinones. Org. Lett. 13, 5468–5471 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Andrews, R. S., Becker, J. J. & Gagné, M. R. Intermolecular addition of glycosyl halides to alkenes mediated by visible light. Angew. Chem. Int. Ed. 49, 7274–7276 (2010).

    Article  CAS  Google Scholar 

  33. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  34. Juris, A. et al. Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988).

    Article  CAS  Google Scholar 

  35. Flamigni, L., Barbieri, A., Sabatini, C., Ventura, B. & Barigelletti, F. Photochemistry and photophysics of coordination compounds: iridium. Top. Curr. Chem. 281, 143–203 (2007).

    Article  CAS  Google Scholar 

  36. Dixon, I. M. et al. A family of luminescent coordination compounds: iridium(III) polyimine complexes. Chem. Soc. Rev. 29, 385–391 (2000).

    Article  CAS  Google Scholar 

  37. Tucker, J. W. & Stephenson, C. R. J. Shining light on photoredox catalysis: theory and synthetic applications. J. Org. Chem. 77, 1617–1622 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Tucker, J. W., Nguyen, J. D., Narayanam, J. M. R., Krabbe, S. W. & Stephenson, C. R. J. Tin-free radical cyclization reactions initiated by photoredox catalysis. Chem. Commun. 46, 4985–4987 (2010).

    Article  CAS  Google Scholar 

  39. Wallentin, C-J., Nguyen, J. D., Finkbeiner, P. & Stephenson, C. R. J. Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. J. Am. Chem. Soc. 134, 8875–8884 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Hill, H. A. O., Pratt, J. M., O'Riordan, M. P., Williams, F. R. & Williams, R. J. P. The chemistry of vitamin B12. Part XV. Catalysis of alkyl halide reduction by vitamin B12a: studies using controlled potential reduction. J. Chem. Soc. A 1859–1862 (1971).

  41. Rondinini, S., Mussini, P. R., Muttini, P. & Sello, G. Silver as a powerful electrocatalyst for organic halide reduction: the critical role of molecular structure. Electrochim. Acta. 46, 3245–3258 (2001).

    Article  CAS  Google Scholar 

  42. Fry, A. J. & Krieger, R. L. Electrolyte effects upon the polarographic reduction of alkyl halides in dimethyl sulfoxide. J. Org. Chem. 41, 54–57 (1976).

    Article  CAS  Google Scholar 

  43. Pause, L., Robert, M. & Savéant, J-M. Can single-electron transfer break an aromatic carbon–heteroatom bond in one step? A novel example of transition between stepwise and concerted mechanisms in the reduction of aromatic iodides. J. Am. Chem. Soc. 121, 7158–7159 (1999).

    Article  CAS  Google Scholar 

  44. McNally, A., Prier, C. K. & MacMillan D. W. C. Discovery of an α-amino C–H arylation reaction using the strategy of accelerated serendipity. Science 334, 1114–1117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. King, K. A., Spellane, P. J. & Watts, R. J. Excited-state properties of a triply ortho-metalated iridium(III) complex. J. Am. Chem. Soc. 107, 1431–1432 (1985).

    Article  CAS  Google Scholar 

  46. Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Tucker, J. W., Zhang, Y., Jamison, T. F. & Stephenson, C. R. J. Visible-light photoredox catalysis in flow. Angew. Chem. Int. Ed. 51, 4144–4147 (2012).

    Article  CAS  Google Scholar 

  48. Baguley, P. A. & Walton, J. C. Flight from the tyranny of tin: the quest for practical radical sources free from metal encumbrances. Angew. Chem. Int. Ed. 37, 3072–3082 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this research from the NSF (CHE-1056568), the Alfred P. Sloan Foundation, Amgen and Boehringer Ingelheim. J.D.N. thanks AstraZeneca for a graduate fellowship and E.M.D. thanks the Boston University Undergraduate Research Program for research support. NMR (CHE-0619339) and mass spectrometry (CHE-0443618) facilities at Boston University are supported by the NSF. The authors thank J.W. Tucker for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.D.N., E.M.D. and J.M.R.N. performed the experiments. All authors conceived and designed the experiments, analysed the data, contributed to discussions and wrote the manuscript.

Corresponding author

Correspondence to Corey R. J. Stephenson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, J., D'Amato, E., Narayanam, J. et al. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nature Chem 4, 854–859 (2012). https://doi.org/10.1038/nchem.1452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing