Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-Markovian polymer reaction kinetics

Abstract

Describing the kinetics of polymer reactions, such as the formation of loops and hairpins in nucleic acids or polypeptides, is complicated by the structural dynamics of their chains. Although both intramolecular reactions, such as cyclization, and intermolecular reactions have been studied extensively, both experimentally and theoretically, there is to date no exact explicit analytical treatment of transport-limited polymer reaction kinetics, even in the case of the simplest (Rouse) model of monomers connected by linear springs. We introduce a new analytical approach to calculate the mean reaction time of polymer reactions that encompasses the non-Markovian dynamics of monomer motion. This requires that the conformational statistics of the polymer at the very instant of reaction be determined, which provides, as a by-product, new information on the reaction path. We show that the typical reactive conformation of the polymer is more extended than the equilibrium conformation, which leads to reaction times significantly shorter than predicted by the existing classical Markovian theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of the examples of intramolecular and intermolecular reactions studied.
Figure 2: Theory and simulations of the cyclization reaction in three dimensions.
Figure 3: Theory and simulations of a diffusive variable in one dimension.
Figure 4: Theory and simulations of a diffusive variable in three dimensions.
Figure 5: Predicted polymer conformations at reaction.

Similar content being viewed by others

References

  1. Wilemski, G. & Fixman, M. Diffusion-controlled intrachain reactions of polymers. 1. Theory. J. Chem. Phys. 60, 866–877 (1974).

    Article  CAS  Google Scholar 

  2. Wilemski, G. & Fixman, M. Diffusion-controlled intrachain reactions of polymers. 2. Results for a pair of terminal reactive groups. J. Chem. Phys. 60, 878–890 (1974).

    Article  CAS  Google Scholar 

  3. Szabo, A., Schulten, K. & Schulten, Z. First passage time approach to diffusion controlled reactions. J. Chem. Phys. 72, 4350–4357 (1980).

    Article  CAS  Google Scholar 

  4. Friedman, B. & O'Shaughnessy, B. Theory of polymer cyclization. Phys. Rev. A 40, 5950–5959 (1989).

    Article  CAS  Google Scholar 

  5. Friedman, B. & O'Shaughnessy, B. Intermolecular reactions in dilute polymer-solutions: nonexistence of diffusion-controlled limit. Europhys. Lett. 23, 667–672 (1993).

    Article  CAS  Google Scholar 

  6. Friedman, B. & O'Shaughnessy, B. Kinetics of intermolecular reactions in dilute polymer-solutions and unentangled melts. Macromolecules 26, 5726–5739 (1993).

    Article  CAS  Google Scholar 

  7. De Gennes, P-G. Kinetics of diffusion-controlled processes in dense polymer systems. 1. Non-entangled regimes. J. Chem. Phys. 76, 3316–3321 (1982).

    Article  CAS  Google Scholar 

  8. Toan, N. M., Morrison, G., Hyeon, C. & Thirumalai, D. Kinetics of loop formation in polymer chains. J. Phys. Chem. B 112, 6094–6106 (2008).

    Article  CAS  Google Scholar 

  9. Bonnet, G., Krichevsky, O. & Libchaber, A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc. Natl Acad. Sci. USA 95, 8602–8606 (1998).

    Article  CAS  Google Scholar 

  10. Lapidus, L. J., Eaton, W. A. & Hofrichter, J. Measuring the rate of intramolecular contact formation in polypeptides. Proc. Natl Acad. Sci. USA 97, 7220–7225 (2000).

    Article  CAS  Google Scholar 

  11. Wallace, M. I., Ying, L., Balasubramanian, S. & Klenerman, D. Non-Arrhenius kinetics for the loop closure of a DNA hairpin. Proc. Natl Acad. Sci. USA 98, 5584–5589 (2001).

    Article  CAS  Google Scholar 

  12. Kim, J., Doose, S., Neuweiler, H. & Sauer, M. The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy. Nucleic Acids Res. 34, 2516–2527 (2006).

    Article  CAS  Google Scholar 

  13. Wang, X. & Nau, W. M. Kinetics of end-to-end collision in short single-stranded nucleic acids. J. Am. Chem. Soc. 126, 808–813 (2004).

    Article  CAS  Google Scholar 

  14. Möglich, A., Joder, K. & Kiefhaber, T. End-to-end distance distributions and intrachain diffusion constants in unfolded polypeptide chains indicate intramolecular hydrogen bond formation. Proc. Natl Acad. Sci. USA 103, 12394–12399 (2006).

    Article  Google Scholar 

  15. Buscaglia, M., Lapidus, L. J., Eaton, W. A. & Hofrichter, J. Effects of denaturants on the dynamics of loop formation in polypeptides. Biophys. J. 91, 276–288 (2006).

    Article  CAS  Google Scholar 

  16. Uzawa, T., Cheng, R. R., Cash, K. J., Makarov, D. E. & Plaxco, K. W. The length and viscosity dependence of end-to-end collision rates in single-stranded DNA. Biophys. J. 97, 205–210 (2009).

    Article  CAS  Google Scholar 

  17. Allemand, J-F., Cocco, S., Douarche, N. & Lia, G. Loops in DNA: an overview of experimental and theoretical approaches. Eur. Phys. J. E Soft Matter 19, 293–302 (2006).

    Article  CAS  Google Scholar 

  18. Wong, S. Y., Pelet, J. M. & Putnam, D. Polymer systems for gene delivery – past, present, and future. Prog. Polym. Sci. 32, 799–837 (2007).

    Article  CAS  Google Scholar 

  19. Dinh, A-T., Pangarkar, C., Theofanous, T. & Mitragotri, S. Understanding intracellular transport processes pertinent to synthetic gene delivery via stochastic simulations and sensitivity analyses. Biophys. J. 92, 831–846 (2007).

    Article  CAS  Google Scholar 

  20. Dinh, A-T., Theofanous, T. & Mitragotri, S. A model for intracellular trafficking of adenoviral vectors. Biophys. J. 89, 1574–1588 (2005).

    Article  CAS  Google Scholar 

  21. Grosberg, A. & Khokhlov, A. R. Statistical Physics of Macromolecules (American Institute of Physics, 1994).

    Google Scholar 

  22. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Clarendon Press, 1988).

    Google Scholar 

  23. Nechaev, S., Oshanin, G. & Blumen, A. Anchoring of polymers by traps randomly placed on a line. J. Stat. Phys. 98, 281–303 (2000).

    Article  Google Scholar 

  24. Oshanin, F., Moreau, M. & Burlatzsky, S. Models of chemical reactions with participation of polymers. Adv. Colloid Interface Sci. 49, 1–46 (1994).

    Article  CAS  Google Scholar 

  25. Sunagawa, S. & Doi, M. Theory of diffusion-controlled intrachain reactions of polymers. Polym. J. 7, 604–612 (1975).

    Article  CAS  Google Scholar 

  26. Doi, M., Diffusion-controlled reaction of polymers. Chem. Phys. 9, 455–466 (1975).

    Article  CAS  Google Scholar 

  27. Likthman, A. E. & Marques, C. M. First-passage problem for the Rouse polymer chain: an exact solution. Europhys. Lett. 75, 971–977 (2006).

    Article  CAS  Google Scholar 

  28. Sokolov, I. M. Cyclization of a polymer: first-passage problem for a non-Markovian process. Phys. Rev. Lett. 90, 080601 (2003).

    Article  CAS  Google Scholar 

  29. Pastor, R., Zwanzig, R. & Szabo, A. Diffusion limited first contact of the ends of a polymer: comparison of theory with simulation. J. Chem. Phys. 105, 3878–3882 (1996).

    Article  CAS  Google Scholar 

  30. Ortiz-Repiso, M. & Rey, A. Intramolecular reaction rates of flexible polymers. 2. Comparison with the renormalization group theory. Macromolecules 31, 8363–8369 (1998).

    Article  CAS  Google Scholar 

  31. Ortiz-Repiso, M., Freire, J. & Rey, A. Intramolecular reaction rates of flexible polymers. 1. Simulation results and the classical theory. Macromolecules 31, 8356–8362 (1998).

    Article  CAS  Google Scholar 

  32. Redner, S. A Guide to First-Passage Processes (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  33. Condamin, S., Bénichou, O., Tejedor, V., Voituriez, R. & Klafter, J. First-passage times in complex scale-invariant media. Nature 450, 77–80 (2007).

    Article  CAS  Google Scholar 

  34. Condamin, S., Tejedor, V., Voituriez, R., Bénichou, O. & Klafter, J. Probing microscopic origins of confined subdiffusion by first-passage observables. Proc. Natl Acad. Sci. USA 105, 5675–5680 (2008).

    Article  CAS  Google Scholar 

  35. Bénichou, O., Chevalier, C., Klafter, J., Meyer, B. & Voituriez, R. Geometry-controlled kinetics. Nature Chem. 2, 472–477 (2010).

    Article  Google Scholar 

  36. Peters, E. & Barenbrug, T. Efficient brownian dynamics simulation of particles near walls. i. Reflecting and absorbing walls. Phys. Rev. E 66, 056701 (2002).

    Article  CAS  Google Scholar 

  37. Panja, D. & Barkema, G. T. Rouse modes of self-avoiding flexible polymers. J. Chem. Phys. 131, 154903 (2009).

    Article  Google Scholar 

  38. Dua, A. & Cherayil, B. The thermodynamics of reversible cyclization in semiflexible polymers. J. Chem. Phys. 117, 7765–7773 (2002).

    Article  CAS  Google Scholar 

  39. Dolgushev, M., Berezovska, G. & Blumen, A. Branched semiflexible polymers: theoretical and simulation aspects. Macromol. Theory Simul. 20, 621–644 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from European Research Council starting Grant FPTOpt-277998 and the French National Research Agency (ANR) Grants Micemico and DynRec are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to O. Bénichou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 820 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guérin, T., Bénichou, O. & Voituriez, R. Non-Markovian polymer reaction kinetics. Nature Chem 4, 568–573 (2012). https://doi.org/10.1038/nchem.1378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing