Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation

Abstract

The enzyme tyrosinase contains two CuI centres, trigonally coordinated by imidazole nitrogens of six conserved histidine residues. The enzyme activates O2 to form a µ-η22-peroxo–dicopper(II) core, which hydroxylates tyrosine to a catechol in the first committed step of melanin biosynthesis. Here, we report a family of synthetic peroxo complexes, with spectroscopic and chemical features consistent with those of oxygenated tyrosinase, formed through the self-assembly of monodentate imidazole ligands, CuI and O2 at −125 °C. An extensively studied complex reproduces the enzymatic electrophilic oxidation of exogenous phenolic substrates to catechols in good stoichiometric yields. The self-assembly and subsequent reactivity support the intrinsic stability of the Cu2O2 core with imidazole ligation, in the absence of a polypeptide framework, and the innate capacity to effect hydroxylation of phenolic substrates. These observations suggest that a foundational role of the protein matrix is to facilitate expression of properties native to the core by bearing the entropic costs of assembly and precluding undesired oxidative degradation pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygenated copper complexes.
Figure 2: Absorption spectra of Cu2O2 complexes.
Figure 3: Self-assembly of Cu2O2 complexes.
Figure 4: Kinetic analysis of substrate reactivity.
Figure 5: Peroxide core transfer.

Similar content being viewed by others

References

  1. Lindsey, J. S. Self-assembly in synthetic routes to molecular devices—biological principles and chemical perspectives—a review. New J. Chem. 15, 153–180 (1991).

    CAS  Google Scholar 

  2. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 35, 1155–1196 (1996).

    Article  CAS  Google Scholar 

  3. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  4. Rao, P. V. & Holm, R. H. Synthetic analogues of the active sites of iron–sulfur proteins. Chem. Rev. 104, 527–559 (2004).

    Article  CAS  Google Scholar 

  5. Herskovitz, T. et al. Structure and properties of a synthetic analog of bacterial iron–sulfur proteins. Proc. Natl Acad. Sci. 69, 2437–2442 (1972).

    Article  CAS  Google Scholar 

  6. Meyer, J. Iron–sulfur protein folds, iron–sulfur chemistry, and evolution. J. Biol. Inorg. Chem. 13, 157–170 (2008).

    Article  CAS  Google Scholar 

  7. Rolff, M., Schottenheim, J., Decker, H. & Tuczek, F. Copper–O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem. Soc. Rev. 40, 4077–4098 (2011).

    Article  CAS  Google Scholar 

  8. Claus, H. & Decker, H. Bacterial tyrosinases. System. Appl. Microbiol. 29, 3–14 (2006).

    Article  CAS  Google Scholar 

  9. Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996).

    Article  CAS  Google Scholar 

  10. Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H. & Sugiyama, M. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281, 8981–8990 (2006).

    Article  CAS  Google Scholar 

  11. Decker, H., Schweikardt, T. & Tuczek, F. The first crystal structure of tyrosinase: all questions answered? Angew. Chem. Int. Ed. 45, 4546–4550 (2006).

    Article  CAS  Google Scholar 

  12. Kitajima, N., Koda, T., Hashimoto, S., Kitagawa, T. & Moro-Oka, Y. Synthesis and characterization of the dinuclear copper(II) complexes [Cu(HB(3,5-Me2pz)3)]2X (X=O2−, (OH)22−, CO32−, O22−). J. Am. Chem. Soc. 113, 5664–5671 (1991).

    Article  CAS  Google Scholar 

  13. Lynch, W. E., Kurtz, D. M., Wang, S. K. & Scott, R. A. Structural and functional models for the dicopper site in hemocyanin. dioxygen binding by copper complexes of tris(1R–4R-imidazolyl-N)phosphines. J. Am. Chem. Soc. 116, 11030–11038 (1994).

    Article  CAS  Google Scholar 

  14. Sorrell, T. N., Allen, W. E. & White, P. S. Sterically hindered [tris(imidazolyl)phosphine]copper complexes: formation and reactivity of a peroxo-dicopper(II) adduct and structure of a dinuclear carbonate-bridged complex. Inorg. Chem. 34, 952–960 (1995).

    Article  CAS  Google Scholar 

  15. Kodera, M. et al. Crystal structure and reversible O2-binding of a room temperature stable μ-η2-η2-peroxodicopper(II) complex of a sterically hindered hexapyridine dinucleating ligand. J. Am. Chem. Soc. 121, 11006–11007 (1999).

    Article  CAS  Google Scholar 

  16. Kitajima, N. & Moro-Oka, Y. Copper–dioxygen complexes. Inorganic and bioinorganic perspectives. Chem. Rev. 94, 737–757 (1994).

    Article  CAS  Google Scholar 

  17. Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper–dioxygen complexes. Chem. Rev. 104, 1013–1045 (2004).

    Article  CAS  Google Scholar 

  18. Lewis, E. A. & Tolman, W. B. Reactivity of dioxygen–copper systems. Chem. Rev. 104, 1047–1076 (2004).

    Article  CAS  Google Scholar 

  19. Hatcher, L. Q. & Karlin, K. D. in Advances in Inorganic Chemistry Including Bioinorganic Studies, (eds Van Eldik, R. & Jan Reedijk, J.) 131–184 (Advances in Inorganic Chemistry Vol. 58, Academic Press, 2006).

  20. Monzani, E. et al. Tyrosinase models. Synthesis; structure; catechol oxidase activity; and phenol monooxygenase activity of a dinuclear copper complex derived from a triamino pentabenzimidazole ligand. Inorg. Chem. 37, 553–562 (1998).

    Article  CAS  Google Scholar 

  21. Santagostini, L. et al. Reversible dioxygen binding and phenol oxygenation in a tyrosinase model system. Chem. Eur. J. 6, 519–522 (2000).

    Article  CAS  Google Scholar 

  22. Itoh, S., Kumei, H., Nagatomo, S., Kitagawa, T. & Fukuzumi, S. Effects of metal ions on physicochemical properties and redox reactivity of phenolates and phenoxyl radicals: mechanistic insight into hydrogen atom abstraction by phenoxyl radical–metal complexes. J. Am. Chem. Soc. 123, 2165–2175 (2001).

    Article  CAS  Google Scholar 

  23. Palavicini, S., Granata, A., Monzani, E. & Casella, L. Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase. J. Am. Chem. Soc. 127, 18031–18036 (2005).

    Article  CAS  Google Scholar 

  24. Mirica, L. M. et al. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308, 1890–1892 (2005).

    Article  CAS  Google Scholar 

  25. Lee, Y. et al. Copper(I)/O2 chemistry with imidazole containing tripodal tetradentate ligands leading to μ-1,2-peroxo-dicopper(II) species. Inorg. Chem. 48, 11297–11309 (2009).

    Article  CAS  Google Scholar 

  26. Brackman, W. & Havinga, E. The oxidation of phenols with copper-amine catalysts and its relation to the mode of action of tyrosinase: I–V. Recueil des Travaux Chimiques des Pays-Bas 74, 937, 1021, 1070, 1100, 1107 (1955).

  27. Zuberbühler, A. D. in Copper Coordination Chemistry, Biochemical and Inorganic Perspectives (eds Karlin, K. D. & Zubieta, J.) 237–258 (Adenine Press, 1983).

    Google Scholar 

  28. Sanyal, I., Strange, R. W., Blackburn, N. J. & Karlin, K. D. Formation of a copper dioxygen complex (Cu2–O2) using simple imidazole ligands. J. Am. Chem. Soc. 113, 4692–4693 (1991).

    Article  CAS  Google Scholar 

  29. Sanyal, I., Karlin, K. D., Strange, R. W. & Blackburn, N. J. Chemistry and structural studies on the dioxygen-binding copper-1,2-dimethylimidazole system. J. Am. Chem. Soc. 115, 11259–11270 (1993).

    Article  CAS  Google Scholar 

  30. Zuberbühler, A. D. in Bioinorganic Chemistry of Copper (eds Karlin, K. D. & Tyeklár, Z.) 264–276 (Chapman & Hall, 1993).

    Book  Google Scholar 

  31. Heirwegh, K., Borginon, H. & Lontie, R. Separation and absorption spectra of [α]- and [β]-haemocyanin of Helix pomatia. Biochim. Biophys. Acta 48, 517–526 (1961).

    Article  CAS  Google Scholar 

  32. Himmelwright, R. S., Eickman, N. C., LuBien, C. D. & Solomon, E. I. Chemical and spectroscopic comparison of the binuclear copper active-site of mollusk and arthropod hemocyanins. J. Am. Chem. Soc. 102, 5378–5388 (1980).

    Article  CAS  Google Scholar 

  33. Stack, T. D. P. Complexity with simplicity: a steric continuum of chelating diamines with copper(I) and dioxygen. Dalton Trans. 10, 1881–1889 (2003).

    Article  Google Scholar 

  34. Kang, P. et al. Bis(μ-oxo) dicopper(III) species of the simplest peralkylated diamine: enhanced reactivity toward exogenous substrates. Inorg. Chem. 49, 11030–11038 (2010).

    Article  CAS  Google Scholar 

  35. Herres-Pawlis, S. et al. Phenolate hydroxylation in a bis(μ-oxo)dicopper(III) complex: lessons from the guanidine/amine series. J. Am. Chem. Soc. 131, 1154–1169 (2009).

    Article  CAS  Google Scholar 

  36. Smith, M. B. & March, J. March's Advanced Organic Chemistry 6th edn, 404 (Wiley, 2007).

    Google Scholar 

  37. Yamazaki, S. & Itoh, S. Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system. J. Am. Chem. Soc. 125, 13034–13035 (2003).

    Article  CAS  Google Scholar 

  38. Itoh, S. et al. Oxygenation of phenols to catechols by a (μ–η2–η2–peroxo)dicopper(II) complex: mechanistic insight into the phenolase activity of tyrosinase. J. Am. Chem. Soc. 123, 6708–6709 (2001).

    Article  CAS  Google Scholar 

  39. Kau, L. S., Spira-Solomon, D. J., Penner-Hahn, J. E., Hodgson, K. O. & Solomon, E. I. X-ray absorption edge determination of the oxidation state and coordination number of copper—application to the type 3 site in Rhus Vernicifera laccase and its reaction with oxygen. J. Am. Chem. Soc. 109, 6433–6442 (1987).

    Article  CAS  Google Scholar 

  40. DuBois, J. L. et al. Cu K-edge XAS study of the [Cu2(μ-O)2] core: direct experimental evidence for the presence of Cu(III). J. Am. Chem. Soc. 119, 8578–8579 (1997).

    Article  CAS  Google Scholar 

  41. Ross, P. K. & Solomon, E. I. An electronic structural comparison of copper peroxide complexes of relevance to hemocyanin and tyrosinase active sites. J. Am. Chem. Soc. 113, 3246–3259 (1991).

    Article  CAS  Google Scholar 

  42. Solomon, E. I., Chen, P., Metz, M., Lee, S. K. & Palmer, A. E. Oxygen binding, activation, and reduction to water by copper proteins. Angew. Chem. Int. Ed. 40, 4570–4590 (2001).

    Article  CAS  Google Scholar 

  43. Martin, R. L. Natural transition orbitals. J. Chem. Phys. 118, 4775–4777 (2003).

    Article  CAS  Google Scholar 

  44. Henson, M. J., Mukherjee, P., Root, D. E., Stack, T. D. P. & Solomon, E. I. Spectroscopic and electronic structural studies of the Cu(III)2 bis-μ-oxo core and its relation to the side-on peroxo-bridged dimer. J. Am. Chem. Soc. 121, 10332–10345 (1999).

    Article  CAS  Google Scholar 

  45. Maiti, D., Woertink, J. S., Narducci Sarjeant, A. A., Solomon, E. I. & Karlin, K. D. Copper dioxygen adducts: formation of bis(μ-oxo)dicopper(III) versus (μ-1,2)peroxodicopper(II) complexes with small changes in one pyridyl-ligand substituent. Inorg. Chem. 47, 3787–3800 (2008).

    Article  CAS  Google Scholar 

  46. Weitzer, M. et al. Reversible binding of dioxygen by the copper(I) complex with tris(2-dimethylaminoethyl)amine (Me6Tren) ligand. Inorg. Chem. 42, 1800–1806 (2003).

    Article  CAS  Google Scholar 

  47. Becker, M., Heinemann, F. W. & Schindler, S. Reversible binding of dioxygen by a copper(I) complex with tris(2-dimethylaminoethyl)amine (Me6tren) as a ligand. Chem. Eur. J. 5, 3124–3129 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Institutes of Health (NIH; GM50730). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the NIH, National Center for Research Resources, Biomedical Technology Program. The authors thank E.I. Solomon for use of the EPR instrument, X. Ottenwaelder for the syntheses of the phenols, and a reviewer for the suggestion of the inclusion of the imidazole Cu–N–C multiple scattering vector at 4.2 Å for the EXAFS analyses.

Author information

Authors and Affiliations

Authors

Contributions

C.C. conducted all the described experiments involving self-assembly, quantification, stability, ligand variation and substrate reactivity. C.T.L. aided in the synthesis of imidazoles and in the XAS and EPR experiments. E.C.W. collected and analysed the XAS data. T.D.P.S. performed DFT and TD-DFT calculations, and C.T.C. and T.D.P.S. were responsible for the preparation of the manuscript.

Corresponding author

Correspondence to T. Daniel P. Stack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Citek, C., Lyons, C., Wasinger, E. et al. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation. Nature Chem 4, 317–322 (2012). https://doi.org/10.1038/nchem.1284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing