Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy


Water is very different from liquids of similar molecular weight, and one of its unique properties is the very efficient transfer of vibrational energy between molecules, which arises as a result of strong dipole–dipole interactions between the O–H oscillators. Although we have a sound understanding of such energy transfer in bulk water, we know less about how, and how quickly, transfer occurs at its interface with a hydrophobic phase, because specifically addressing the outermost monolayer is difficult. Here, we use ultrafast two-dimensional surface-specific vibrational spectroscopy to probe the interfacial energy dynamics of heavy water (D2O) at the water/air interface. The measurements reveal the presence of surprisingly rapid energy transfer, both between hydrogen-bonded interfacial water molecules (intermolecular), and between O–D groups sticking out from the water surface and those located on the same molecule and pointing towards the water bulk (intramolecular). Vibrational energy transfer occurs on sub-picosecond timescales, and its rates and pathways can be quantified directly.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental scheme for 2D-SFG spectroscopy.
Figure 2: 2D-SFG spectroscopy of the D2O water/air interface.
Figure 3: 2D-SFG spectra of the D2O water/air interface at various delay times after the excitation.
Figure 4: Ultrafast intramolecular energy transfer within interfacial water molecules.


  1. 1

    Du, Q., Superfine, R., Freysz, E. & Shen, Y. R. Vibrational spectroscopy of water at the vapor water interface. Phys. Rev. Lett. 70, 2313–2316 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Du, Q., Freysz, E. & Shen, Y. R. Surface vibrational spectroscopic studies of hydrogen-bonding and hydrophobicity. Science 264, 826–828 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Woutersen, S. & Bakker, H. J. Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Lock, A. J., Woutersen, S. & Bakker, H. J. Ultrafast energy equilibration in hydrogen-bonded liquids. J. Phys. Chem. A 105, 1238–1243 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Cowan, M. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Scatena, L., Brown, M. & Richmond, G. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Shen, Y. R. & Ostroverkhov, V. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106, 1140–1154 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Gopalakrishnan, S., Liu, D. F., Allen, H. C., Kuo, M. & Shultz, M. J. Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops. Chem. Rev. 106, 1155–1175 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Sovago, M., Campen, R. K., Bakker, H. J. & Bonn, M. Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chem. Phys. Lett. 470, 7–12 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Tian, C. S. & Shen, Y. R. Sum-frequency vibrational spectroscopic studies of water/vapor interfaces. Chem. Phys. Lett. 470, 1–6 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Water hydrogen bond structure near highly charged interfaces is not like ice. J. Am. Chem. Soc. 132, 6867–6869 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Stiopkin, I. V. et al. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474, 192–195 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Shen, Y. R. Surface-properties probed by 2nd harmonic and sum-frequency generation. Nature 337, 519–525 (1989).

    CAS  Article  Google Scholar 

  14. 14

    Cho, M. H. Coherent two-dimensional optical spectroscopy. Chem. Rev. 108, 1331–1418 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Khalil, M., Demirdoven, N. & Tokmakoff, A. Coherent 2D IR spectroscopy: molecular structure and dynamics in solution. J. Phys. Chem. A 107, 5258–5279 (2003).

    CAS  Article  Google Scholar 

  16. 16

    McGuire, J. A. & Shen, Y. R. Ultrafast vibrational dynamics at water interfaces. Science 313, 1945–1948 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Smits, M., Ghosh, A., Sterrer, M., Müller, M. & Bonn, M. Ultrafast vibrational energy transfer between surface and bulk water at the air–water interface. Phys. Rev. Lett. 98, 098302 (2007).

    Article  Google Scholar 

  18. 18

    Bredenbeck, J., Ghosh, A., Nienhuys, H. K. & Bonn, M. Interface-specific ultrafast two-dimensional vibrational spectroscopy. Acc. Chem. Res. 42, 1332–1342 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Piatkowski, L., Eisenthal, K. B. & Bakker, H. J. Ultrafast intermolecular energy transfer in heavy water. Phys. Chem. Chem. Phys. 11, 9033–9038 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Lock, A. J. & Bakker, H. J. Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117, 1708–1713 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Kraemer, D. et al. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl Acad. Sci. USA 105, 437–442 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Kwak, K., Park, S., Finkelstein, I. J. & Fayer, M. D. Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: a new approach. J. Chem. Phys. 127, 124503 (2007).

    Article  Google Scholar 

  23. 23

    Asbury, J. B. et al. Dynamics of water probed with vibrational echo correlation spectroscopy. J. Chem. Phys. 121, 12431–12446 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Loparo, J. J., Roberts, S. T. & Tokmakoff, A. Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in two-dimensional IR line shapes. J. Chem. Phys. 125, 194521 (2006).

    Article  Google Scholar 

  25. 25

    Taylor, R. S., Dang, L. X. & Garrett, B. C. Molecular dynamics simulations of the liquid/vapor interface of SPC/E water. J. Phys. Chem. 100, 11720–11725 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Mucha, M. et al. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions. J. Phys. Chem. B 109, 7617–7623 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Gan, W., Wu, D., Zhang, Z., Feng, R. & Wang, H. Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface. J. Chem. Phys. 124, 114705 (2006).

    Article  Google Scholar 

  28. 28

    Bredenbeck, J., Ghosh, A., Smits, M. & Bonn, M. Ultrafast two dimensional-infrared spectroscopy of a molecular monolayer. J. Am. Chem. Soc. 130, 2152–2153 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Cervetto, V., Helbing, J., Bredenbeck, J. & Hamm, P. Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: an experimental and theoretical comparison. J. Chem. Phys. 121, 5935–5942 (2004).

    CAS  Article  Google Scholar 

Download references


The authors thank J. Versluis and M. Jan van Zadel for their expert help and support and I. Cerjak for providing graphics.

Author information




M.B. and H.J.B. designed the research project. Z.Z. and L.P. performed the experiments. M.B., Z.Z. and L.P. analysed the data. M.B. wrote the manuscript. All authors discussed the results, designed experiments and commented on the manuscript.

Corresponding author

Correspondence to Mischa Bonn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 633 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Z., Piatkowski, L., Bakker, H. et al. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nature Chem 3, 888–893 (2011). https://doi.org/10.1038/nchem.1158

Download citation

Further reading