Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-atom catalysis of CO oxidation using Pt1/FeOx


Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: HAADF-STEM images of samples A and B.
Figure 2: X-ray absorption studies.
Figure 3: In situ FTIR spectra of CO adsorption for samples A and B.
Figure 4: The proposed reaction pathways for CO oxidation on the Pt1/FeOx catalyst (sample A).


  1. 1

    Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Chen, M. & Goodman, D. W. The structure of catalytically active gold on titania. Science 306, 252–255 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nature Mater. 8, 213–216 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Judai, K., Abbet, S., Worz, A. S., Heiz, U. & Henry, C. R. Low-temperature cluster catalysis. J. Am. Chem. Soc. 126, 2732–2737 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Remediakis, I. N., Lopez, N. & Nørskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem. Int. Ed. 44, 1824–1826 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Uzun, A., Ortalan, V., Browning, N. D. & Gates, B. C. A site-isolated mononuclear iridium complex catalyst supported on MgO: characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy. J. Catal. 269, 318–328 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Uzun, A., Ortalan, V., Hao, Y., Browning, N. D. & Gates, B. C. Nanoclusters of gold on a high-area support: almost uniform nanoclusters imaged by scanning transmission electron microscopy. ACS Nano 3, 3691–3695 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Kaden, W. E., Wu, T., Kunkel, W. A. & Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826–829 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Böhme, D. K. & Schwarz, H. Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts. Angew. Chem. Int. Ed. 44, 2336–2354 (2005).

    Article  Google Scholar 

  13. 13

    Lee, S. S., Fan, C. Y., Wu, T. P. & Anderson, S. L. CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. J. Am. Chem. Soc. 126, 5682–5683 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Matthey, D. et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315, 1692–1696 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3 . Science 325, 1670–1673 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Qiao, B. & Deng, Y. Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2 . Chem. Commun. 2192–2193 (2003).

  18. 18

    Qiao, B., Liu, L., Zhang, J. & Deng, Y. Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: from gold to palladium. J. Catal. 261, 241–244 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Nellist, P. D. & Pennycook, S. J. Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Pennycook, S. J. Z-contrast stem for materials science. Ultramicroscopy 30, 58–69 (1989).

    Article  Google Scholar 

  21. 21

    Wang, S. et al. Dopants adsorbed as single atoms prevent degradation of catalysts. Nature Mater. 3, 143–146 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Nellist, P. D. et al. Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741–1741 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Sohlberg, K., Rashkeev, S., Borisevich, A. Y., Pennycook, S. J. & Pantelides, S. T. Origin of anomalous Pt–Pt distances in the Pt/alumina catalytic system. ChemPhysChem 5, 1893–1897 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Pennycook, S. J. et al. Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems. Phil. Trans. R. Soc. A 367, 3709–3733 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nature Nanotech. 5, 506–510 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Li, Z. Y. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Allard, L. F. et al. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc. (Tokyo) 58, 199–212 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Chang, J-R., Koningsberger, D. C. & Gates, B. C. Structurally simple supported platinum clusters prepared from [Pt15(CO)30]2− on magnesium oxide. J. Am. Chem. Soc. 114, 6460–6466 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Xiao, L. & Wang, L. Structures of platinum clusters: planar or spherical? J. Phys. Chem. A 108, 8605–8614 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Yoshida, H. et al. XANES study of the support effect on the state of platinum catalysts. J. Synchrotron Radiat. 6, 471–473 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Pozdnyakova, O. et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: oxidation state and surface species on Pt/CeO2 under reaction conditions. J. Catal. 237, 1–16 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Greenler, R. G. et al. Stepped single-crystal surfaces as models for small catalyst particles. Surf. Sci. 152–153, 338–345 (1985).

    Article  Google Scholar 

  33. 33

    Brandt, R. K., Hughes, M. R., Bourget, L. P., Truszkowska, K. & Greenler, R. G. The interpretation of CO adsorbed on Pt/SiO2 of two different particle-size distributions. Surf. Sci. 286, 15–25 (1993).

    CAS  Article  Google Scholar 

  34. 34

    Kappers, M. & Maas, J. Correlation between CO frequency and Pt coordination number. A DRIFT study on supported Pt catalysts. Catal. Lett. 10, 365–373 (1991).

    CAS  Article  Google Scholar 

  35. 35

    Hadjiivanov, K. I. & Vayssilov, G. N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 47, 307–511 (2002).

    CAS  Google Scholar 

  36. 36

    Bazin, P., Saur, O., Lavalley, J. C., Daturi, M. & Blanchard, G. FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles. Phys. Chem. Chem. Phys. 7, 187–194 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Gruene, P., Fielicke, A., Meijer, G. & Rayner, D. M. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Phys. Chem. Chem. Phys. 10, 6144–6149 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Xie, X., Li, Y., Liu, Z-Q., Haruta, M. & Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Haruta, M., Yamada, N., Kobayashi, T. & Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 115, 301–309 (1989).

    CAS  Article  Google Scholar 

  41. 41

    Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6, 102–115 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Huang, Y. Q., Wang, A. Q., Wang, X. D. & Zhang, T. Preferential oxidation of CO under excess H2 conditions over iridium catalysts. Int. J. Hydrogen Energy 32, 3880–3886 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Wang, X. G. et al. The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry. Phys. Rev. Lett. 81, 1038–1041 (1998).

    Article  Google Scholar 

  44. 44

    Yamamoto, S. et al. Water adsorption on α-Fe2O3 (0001) at near ambient conditions. J. Phys. Chem. C 114, 2256–2266 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Jin, J. J., Ma, X. Y., Kim, C. Y., Ellis, D. E. & Bedzyk, M. J. Adsorption of V on a hematite (0001) surface and its oxidation: submonolayer coverage. Surf. Sci. 601, 3082–3098 (2007).

    CAS  Article  Google Scholar 

  46. 46

    Lübbe, M. & Moritz, W. A LEED analysis of the clean surfaces of α-Fe2O3 (0001) and α-Cr2O3 (0001) bulk single crystals. J. Phys.: Condens. Matter 21, 134010 (2009).

    Google Scholar 

  47. 47

    Wasserman, E., Rustad, J. R., Felmy, A. R., Hay, B. P. & Halley, J. W. Ewald methods for polarizable surfaces with application to hydroxylation and hydrogen bonding on the (012) and (001) surfaces of α-Fe2O3 . Surf. Sci. 385, 217–239 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Thevuthasan, S. et al. Surface structure of MBE-grown α-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction. Surf. Sci. 425, 276–286 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Alavi, A., Hu, P., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    CAS  Article  Google Scholar 

  50. 50

    Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301, 935–938 (2003).

    CAS  Article  Google Scholar 

Download references


We thank Y. Huang, S. Zhang, T. Hu, J. Zhang, Y. Xie and L. Zheng for their help in the EXAFS measurements and data analysis, and L. Li for infrared measurements and discussion. We also acknowledge E. Okunishi for assistance on operating the JEM ARM-200F TEM/STEM. Particularly, we thank Jeffrey T. Miller for his suggestions and comments on EXAFS analysis during the manuscript revision process. Financial support for this research work from the National Science Foundation of China (20325620, 20773124) and the Ministry of Science and Technology of China (NKBRSF 2007CB815200, 2011CB932400) is also acknowledged. Part of the electron microscopy work was conducted at the Oak Ridge National Laboratory's High Temperature Materials Laboratory, sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The calculations were performed at the Shanghai Supercomputing Center and the Computer Network Information Center, Chinese Academy of Sciences.

Author information




B. Qiao performed the catalyst preparation, characterizations and catalytic tests. X. Yang and J. Li conducted DFT calculations and wrote part of the paper (calculation). L.F. Allard and J. Liu conducted the STEM examinations and contributed to writing the STEM sections. Z. Jiang and Y. Cui performed measurements and data analyses of EXAFS. A. Wang and T. Zhang designed the study, analysed the data and co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jingyue Liu, Jun Li or Tao Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3634 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qiao, B., Wang, A., Yang, X. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chem 3, 634–641 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing