Article | Published:

Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes

Nature Chemistry volume 3, pages 538542 (2011) | Download Citation

Abstract

Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N23− radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s−1.

  • Compound C52H128Gd2KN6O10Si8

    [Potassium 1,4,7,10,13,16-hexaoxacyclooctadecane bis-tetrahydrofuran] {μ-η22-dimidium nitride di[gadolinium bis-trimethylsilylamide tetrahydrofuran]}

  • Compound C52H128Dy2KN6O10Si8

    [Potassium 1,4,7,10,13,16-hexaoxacyclooctadecane bis-tetrahydrofuran] {μ-η22-dimidium nitride di[dysprosium bis-trimethylsilylamide tetrahydrofuran]}

  • Compound C32H88Gd2N6O2Si8

    {μ-η22-Pernitride di[gadolinium bis-trimethylsilylamide tetrahydrofuran]}

  • Compound C32H88Dy2N6O2Si8

    {μ-η22-Pernitride di[dysprosium bis-trimethylsilylamide tetrahydrofuran]}

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

  2. 2.

    , & Molecular Nanomagnets (Oxford Univ. Press, 2006).

  3. 3.

    A criterion for the anisotropy barrier in single-molecule magnets. Inorg. Chem. 46, 10035–10037 (2007).

  4. 4.

    & What is not required to make a single molecule magnet. Faraday Discuss. 148, 229–238 (2011).

  5. 5.

    et al. A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew. Chem. Int. Ed. 45, 4926–4929 (2006).

  6. 6.

    & Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

  7. 7.

    & Spin-based quantum computers made by chemistry: hows and whys. J. Mater. Chem. 19, 1718–1730 (2009).

  8. 8.

    et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Mater. 8, 194–197 (2009).

  9. 9.

    & Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

  10. 10.

    et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

  11. 11.

    , , , & Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003).

  12. 12.

    , , , & Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J. Phys. Chem. B 108, 11265–11271 (2004).

  13. 13.

    & Slow magnetic relaxation in a trigonal prismatic uranium(III) complex. J. Am. Chem. Soc. 131, 12558–12559 (2009).

  14. 14.

    et al. Slow magnetic relaxation in a high-spin iron(II) complex. J. Am. Chem. Soc. 132, 1224–1225 (2010).

  15. 15.

    , , , & Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)dysprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state. Inorg. Chem. 47, 10217–10219 (2008).

  16. 16.

    et al. Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13− (LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg. Chem. 48, 3467–3479 (2009).

  17. 17.

    et al. A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. Angew. Chem. Int. Ed. 48, 9489–9492 (2009).

  18. 18.

    et al. Two-step relaxation in a linear tetranuclear dysprosium(III) aggregate showing single-molecule magnet behavior. J. Am. Chem. Soc. 132, 8538–8539 (2010).

  19. 19.

    et al. Coupling Dy3 triangles enhances their slow magnetic relaxation. Angew. Chem. Int. Ed. 49, 6352–6356 (2010).

  20. 20.

    , , & Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416, 406–409 (2002).

  21. 21.

    et al. Isolation of dysprosium and yttrium complexes of a three-electron reduction product in the activation of dinitrogen, the (N2)3− radical. J. Am. Chem. Soc. 131, 11195–11202 (2009).

  22. 22.

    & Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem. Rev. 102, 2369–2388 (2002).

  23. 23.

    , , , & Antiferromagnetic coupling in a gadolinium(III) semiquinonato complex. Angew. Chem. Int. Ed. 39, 246–248 (2000).

  24. 24.

    , & Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuGdX3·nH2O complexes (LH2 standing for tetradentate Schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO). Inorg. Chem. 39, 165–168 (2000).

  25. 25.

    , & Cyclic single-molecule magnet in heterospin system. J. Am. Chem. Soc. 130, 10460–10461 (2008).

  26. 26.

    et al. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007).

  27. 27.

    & Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method. Inorg. Chem. 49, 4458–4465 (2010).

Download references

Acknowledgements

The authors thank the National Science Foundation for support (grant no. CHE-0617063 and CHE-1010002) and T. David Harris for valuable discussions.

Author information

Affiliations

  1. Department of Chemistry, University of California, Berkeley, California 94720-1460, USA

    • Jeffrey D. Rinehart
    •  & Jeffrey R. Long
  2. Department of Chemistry, University of California, Irvine, California 92697-2025, USA

    • Ming Fang
    •  & William J. Evans

Authors

  1. Search for Jeffrey D. Rinehart in:

  2. Search for Ming Fang in:

  3. Search for William J. Evans in:

  4. Search for Jeffrey R. Long in:

Contributions

W.J.E. and M.F. designed and executed the synthesis and crystallographic characterization of all compounds. J.R.L. and J.D.R. planned and executed the magnetic measurements and analysed the resulting data. All authors were involved in the writing of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to William J. Evans or Jeffrey R. Long.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Crystallographic information files

  1. 1.

    Supplementary information

    Crystallographic data for compound 1

  2. 2.

    Supplementary information

    Crystallographic data for compound 2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nchem.1063

Further reading