Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A two-dimensional phase of TiO2 with a reduced bandgap

Abstract

Titanium dioxide is the prototypical transition metal oxide photocatalyst. However, the larger than 3 eV bandgap of common bulk phases of TiO2 limits its light absorption to UV light, making it inefficient for solar energy conversion. Attempts at increasing visible light activity by narrowing the bandgap of TiO2 through doping have proven difficult, because of defect-induced charge trapping and recombination sites of photo-excited charge carriers. Here, we report the existence of a dopant-free, pure TiO2 phase with a narrow bandgap. This new pure TiO2 phase forms on the surface of rutile TiO2(011) by oxidation of bulk titanium interstitials. We measure a bandgap of only ~2.1 eV for this new phase, matching it closely with the energy of visible light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic-resolution STM images of the rutile TiO2(011) surface.
Figure 2: Scanning tunnelling spectroscopy (STS) measurements.
Figure 3: Comparison of TiO2 phases by photoemission spectroscopy.
Figure 4: Resonant photoemission measurement for the valence band maximum of the new TiO2 phase.

Similar content being viewed by others

References

  1. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  2. Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

    Article  CAS  Google Scholar 

  3. Choi, W., Termin, A. & Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994).

    Article  Google Scholar 

  4. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001).

    Article  CAS  Google Scholar 

  5. Khan, S. U. M., Al-Shahry, M. & Ingler, W. B. Jr. Efficient photochemical water splitting by a chemically modified n-TiO2 . Science 297, 2243–2245 (2002).

    Article  CAS  Google Scholar 

  6. Kim, D. Y., Almeida, J. S. d., KoCi, L. & Ahuja, R. Dynamical stability of the hardest known oxide and the cubic solar material: TiO2 . Appl. Phys. Lett. 90, 171903 (2007).

    Article  Google Scholar 

  7. Mattesini, M. et al. Cubic TiO2 as a potential light absorber in solar-energy conversion. Phys. Rev. B 70, 115101 (2004).

    Article  Google Scholar 

  8. Ariga, H. et al. Surface-mediated visible-light photo-oxidation on pure TiO2(001). J. Am. Chem. Soc. 131, 14670–14672 (2009).

    Article  CAS  Google Scholar 

  9. Papageorgiou A. C. et al. Electron traps and their effect on the surface chemistry of TiO2(110). Proc. Natl Acad. Sci. USA 107, 2391–2396 (2010).

    Article  Google Scholar 

  10. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  11. Torrelles, X. et al. Geometric structure of TiO2(011)(2×1). Phys. Rev. Lett. 101, 185501 (2008).

    Article  CAS  Google Scholar 

  12. Gong, X.-Q. et al. The 2×1 reconstruction of the rutile TiO2(011) surface: a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf. Sci. 603, 138–144 (2009).

    Article  CAS  Google Scholar 

  13. Li, M. et al. Oxygen-induced restructuring of the TiO2(110) surface: a comprehensive study. Surf. Sci. 437, 173–190 (1999).

    Article  CAS  Google Scholar 

  14. Bowker, M. & Bennett, R. A. The role of Ti3+ interstitials in TiO2 (110) reduction and oxidation. J. Phys. Condens. Matter 21, 474224 (2009).

    Article  Google Scholar 

  15. Stone, P., Bennett, R. A. & Bowker, M. Reactive re-oxidation of reduced TiO2 (110) surfaces demonstrated by high temperature STM movies. New J. Phys. 1, 8 (1999).

    Article  Google Scholar 

  16. McCarty, K. F. Growth regimes of the oxygen-deficient TiO2(110) surface exposed to oxygen. Surf. Sci. 543, 185–206 (2003).

    Article  CAS  Google Scholar 

  17. Dulub, O., Valentin, C. D., Selloni, A. & Diebold, U. Structure, defects, and impurities at the rutile TiO2(011)–(2×1) surface: a scanning tunneling microscopy study. Surf. Sci. 600, 4407–4417 (2006).

    Article  CAS  Google Scholar 

  18. Batzill, M., Katsiev, K., Gaspar, D. J. & Diebold, U. Variations of the local electronic surface properties of TiO2(110) induced by intrinsic and extrinsic defects. Phys. Rev. B 66, 235401 (2002).

    Article  Google Scholar 

  19. Thomas, A. G. et al. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and X-ray absorption spectroscopy. Phys. Rev. B 75, 035105 (2007).

    Article  Google Scholar 

  20. Zhang, Z., Jeng, S.-P. & Henrich, V. E. Cation–ligand hybridization for stoichiometric and reduced TiO2 (110) surfaces determined by resonant photoemission. Phys. Rev. B 43, 12004–12011 (1991).

    Article  CAS  Google Scholar 

  21. Henrich, V. E., Dresselhaus, G. & Zeiger, H. J. Observation of two-dimensional phases associated with defect states on the surface of TiO2 . Phys. Rev. Lett. 36, 1335–1338 (1976).

    Article  CAS  Google Scholar 

  22. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  CAS  Google Scholar 

  23. Smith, K. E. & Henrich, V. E. Resonant photoemission in Ti2O3 and V2O3: hybridization and localization of cation 3d orbitals. Phys. Rev. B 38, 9571–9580 (1988).

    Article  CAS  Google Scholar 

  24. Hebenstreit, E. L. D. et al. Sulfur on TiO2(110) studied with resonant photoemission. Phys. Rev. B 64, 115418 (2001).

    Article  Google Scholar 

  25. Mattesini, M. et al. High-pressure and high-temperature synthesis of the cubic TiO2 polymorph. Phys. Rev. B 70, 212101 (2004).

    Article  Google Scholar 

  26. Rawat, V., Zakharov, D. N., Stach, E. A. & Sands, T. D. Pseudomorphic stabilization of rocksalt GaN in TiN/GaN multilayers and superlattices. Phys. Rev. B 80, 024114 (2009).

    Article  Google Scholar 

  27. Ohno, T., Sarukawa, K. & Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 26, 1167–1170 (2002).

    Article  CAS  Google Scholar 

  28. Losovyj, Y. et al. Optimization of the 3m TGM beamline, at CAMD, for constant initial state spectroscopy. Nucl. Instrum. Meth. A 582, 264–266 (2007).

    Article  CAS  Google Scholar 

  29. Hüfner, S. Photoelectron Spectroscopy: Principles and Applications (Springer, 2003).

Download references

Acknowledgements

The photoemission data were collected at the Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge, LA, operated by the Louisiana State University (LSU). The authors acknowledge financial support from the US Department of Energy, Office of Basic Energy Sciences (grant no. DE-SC0001508).

Author information

Authors and Affiliations

Authors

Contributions

J.T. performed the experiments, analysed the data and wrote the paper. T.L. assisted with the experiments. M.B. directed the research and wrote the paper. All authors read and approved the contents of this manuscript.

Corresponding author

Correspondence to Matthias Batzill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 577 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, J., Luttrell, T. & Batzill, M. A two-dimensional phase of TiO2 with a reduced bandgap. Nature Chem 3, 296–300 (2011). https://doi.org/10.1038/nchem.1006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing