Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Luminescent solar concentrators for building-integrated photovoltaics


The transition to fully energetically sustainable architecture through the realization of so-called net zero-energy buildings is currently in progress in areas with low population density. However, this is not yet true in cities, where the cost of land for the installation of ground photovoltaic (PV) is prohibitively high and the rooftop space is too scarce to accommodate the PV modules necessary for sustaining the electrical requirements of tall buildings. Thus, new technologies are being investigated to integrate solar-harvesting devices into building façades in the form of PV windows or envelope elements. Luminescent solar concentrators (LSCs) are the most promising technology for semi-transparent, electrodeless PV glazing systems that can be integrated ‘invisibly’ into the built environment without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. After 40 years of research, recent breakthroughs in the realization of reabsorption-free emitters with broadband absorption have boosted the performance of LSCs to such a degree that they might be commercialized in the near future. In this Perspective, we explore the successful strategies that have allowed this change of pace, examining and comparing the different types of chromophores and waveguide materials, and discuss the issues that remain to be investigated for further progress.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Luminescent solar concentration photovoltaic windows and panels.
Figure 2: Types of LSC chromophores and spectral coverage achievable with real emitters.
Figure 3: Performances achievable with different chromophores and waveguide materials.


  1. 1

    Jelle, B. P., Breivik, C. & Røkenes, H. D. Building integrated photovoltaic products: a state-of-the-art review and future research opportunities. Sol. Energ. Mater. Sol. Cells 100, 69–96 (2012).

    Article  Google Scholar 

  2. 2

    The European Parliament and the Council of the European Union. Directive 2010/31/EU of the European Parliament and the Council on the energy performance of buildings (recast). Off. J. Eur. Union 18, 13–35 (2010).

    Google Scholar 

  3. 3

    Debije, M. G. Solar energy collectors with tunable transmission. Adv. Funct. Mater. 20, 1498–1502 (2010).

    CAS  Article  Google Scholar 

  4. 4

    van Sark, W. G. J. H. M. Luminescent solar concentrators — a low cost photovoltaics alternative. Renewable Energy 49, 207–210 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Meinardi, F. et al. Large-area luminescent solar concentrators based on Stokes-shift-engineered nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8, 392–399 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Meinardi, F. et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photonics 11, 177–185 (2017).

    CAS  Article  Google Scholar 

  7. 7

    Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 10, 878–885 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Weber, W. H. & Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 15, 2299–2300 (1976).

    CAS  Article  Google Scholar 

  9. 9

    Goetzberger, A. & Greube, W. Solar energy conversion with fluorescent collectors. Appl. Phys. A Mater. Sci. Process. 14, 123–139 (1977).

    CAS  Google Scholar 

  10. 10

    Saifullah, M., Gwak, J. & Yun, J. H. Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV). J. Mater. Chem. A 4, 8512–8540 (2016).

    CAS  Article  Google Scholar 

  11. 11

    Debije, M. G. & Verbunt, P. P. C. Solar concentrators: thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2, 12–35 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Yablonovitch, E. Thermodynamics of the fluorescent planar concentrator. J. Opt. Soc. Am. 70, 1362–1363 (1980).

    Article  Google Scholar 

  14. 14

    Currie, M. J., Mapel, J. K., Heidel, T. D., Goffri, S. & Baldo, M. A. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008).

    CAS  Article  Google Scholar 

  15. 15

    van Sark, W. G. J. H. M. et al. Luminescent solar concentrators — a review of recent results. Opt. Express 16, 21773–21792 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Banal, J. L., Ghiggino, K. P. & Wong, W. W. H. Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation-induced emitter. Phys. Chem. Chem. Phys. 16, 25358–25363 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Portnoi, M., Sol, C., Tummeltshammer, C. & Papakonstantinou, I. Impact of curvature on the optimal configuration of flexible luminescent solar concentrators. Opt. Lett. 42, 2695–2698 (2017).

    CAS  Article  Google Scholar 

  18. 18

    Aste, N., Tagliabue, L. C., Del Pero, C., Testa, D. & Fusco, R. Performance analysis of a large-area luminescent solar concentrator module. Renewable Energy 76, 330–337 (2015).

    Article  Google Scholar 

  19. 19

    Slooff, L. H. et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Status Solidi RRL 2, 257–259 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Debije, M. G., Tzikas, C., Rajkumar, V. A. & de Jong, M. M. The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype. Renew. Energy 113, 1288–1292 (2017).

    Article  Google Scholar 

  21. 21

    van Sark, W. et al. The “electric Mondrian” as a luminescent solar concentrator demonstrator case study. Solar RRL 1, 1600015 (2017).

    Article  Google Scholar 

  22. 22

    Batchelder, J. S., Zewai, A. H. & Cole, T. Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. Appl. Opt. 18, 3090–3110 (1979).

    CAS  Article  Google Scholar 

  23. 23

    Desmet, L., Ras, A. J. M., de Boer, D. K. G. & Debije, M. G. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency. Opt. Lett. 37, 3087–3089 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Debije, M. G. et al. Promising fluorescent dye for solar energy conversion based on a perylene perinone. Appl. Opt. 50, 163–169 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Sanguineti, A. et al. High Stokes shift perylene dyes for luminescent solar concentrators. Chem. Commun (Camb.) 49, 1618–1620 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Krumer, Z. et al. Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Shcherbatyuk, G. V., Inman, R. H., Wang, C., Winston, R. & Ghosh, S. Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Appl. Phys. Lett. 96, 191901 (2010).

    Article  Google Scholar 

  28. 28

    Bomm, J. et al. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 95, 2087–2094 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Sanguineti, A. et al. NIR emitting ytterbium chelates for colourless luminescent solar concentrators. Phys. Chem. Chem. Phys. 14, 6452–6455 (2012).

    Article  Google Scholar 

  30. 30

    Wang, T. et al. Luminescent solar concentrator employing rare earth complex with zero self-absorption loss. Sol. Energy 85, 2571–2579 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Zhou, Y. et al. Near infrared, highly efficient luminescent solar concentrators. Adv. Energy Mater. 6, 1501913 (2016).

    Article  Google Scholar 

  32. 32

    Bronstein, N. D. et al. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 8, 44–53 (2013).

    Article  Google Scholar 

  33. 33

    Talapin, D. V. et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Bronstein, N. D. et al. Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration. ACS Photonics 2, 1576–1583 (2015).

    CAS  Article  Google Scholar 

  35. 35

    Erickson, C. S. et al. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8, 3461–3467 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Bradshaw, L. R., Knowles, K. E., McDowall, S. & Gamelin, D. R. Nanocrystals for luminescent solar concentrators. Nano Lett. 15, 1315–1323 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Meinardi, F. et al. Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators. ACS Energy Lett. 2, 2368–2377 (2017).

    CAS  Article  Google Scholar 

  38. 38

    Viswanatha, R., Brovelli, S., Pandey, A., Crooker, S. A. & Klimov, V. I. Copper-doped inverted core/shell nanocrystals with “permanent” optically active holes. Nano Lett. 11, 4753–4758 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Hu, X. et al. Ray-trace simulation of CuInS(Se)2 quantum dot based luminescent solar concentrators. Opt. Express 23, A858–A867 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Knowles, K. E., Kilburn, T. B., Alzate, D. G., McDowall, S. & Gamelin, D. Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators. Chem. Commun. (Camb.) 51, 9129–9132 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Chen, W. et al. Heavy metal free nanocrystals with near infrared emission applying in luminescent solar concentrator. Solar RRL 1, 1700041 (2017).

    Article  Google Scholar 

  42. 42

    Meier, C., Gondorf, A., Lüttjohann, S., Lorke, A. & Wiggers, H. Silicon nanoparticles: absorption, emission, and the nature of the electronic bandgap. J. Appl. Phys. 101, 103112 (2007).

    Article  Google Scholar 

  43. 43

    Hannah, D. C. et al. On the origin of photoluminescence in silicon nanocrystals: pressure-dependent structural and optical studies. Nano Lett. 12, 4200–4205 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Zhao, Y. & Lunt, R. R. Transparent luminescent solar concentrators for large-area solar windows enabled by massive Stokes-shift nanocluster phosphors. Adv. Energy Mater. 3, 1143–1148 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Colby, K. A. et al. Electronic energy migration on different time scales: concentration dependence of the time-resolved anisotropy and fluorescence quenching of Lumogen Red in poly(methyl methacrylate). J. Phys. Chem. A 114, 3471–3482 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Zettl, M., Mayer, O., Klampaftis, E. & Richards, B. S. Investigation of host polymers for luminescent solar concentrators. Energy Technol. 5, 1037–1044 (2017).

    Article  Google Scholar 

  47. 47

    Kastelijn, M. J., Bastiaansen, C. W. M. & Debije, M. G. Influence of waveguide material on light emission in luminescent solar concentrators. Opt. Mater. 31, 1720–1722 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Rubin, M. Optical properties of soda lime silica glasses. Sol. Energy Mater. 12, 275–288 (1985).

    CAS  Article  Google Scholar 

  49. 49

    Ioannides, N. et al. Approaches to mitigate polymer-core loss in plastic optical fibers: a review. Mater. Res. Express 1, 032002 (2014).

    Article  Google Scholar 

  50. 50

    SCHOTT. Optical glass data sheets SCHOTT (2015).

  51. 51

    Batchelder, J. S., Zewail, A. H. & Cole, T. Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies. Appl. Opt. 20, 3733–3754 (1981).

    CAS  Article  Google Scholar 

  52. 52

    Verbunt, P. P. C. et al. Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals. Adv. Funct. Mater. 19, 2714–2719 (2009).

    CAS  Article  Google Scholar 

  53. 53

    Verbunt, P. P. C., Sánchez-Somolinos, C., Broer, D. J. & Debije, M. G. Anisotropic light emissions in luminescent solar concentrators–isotropic systems. Opt. Express 21, A485–A493 (2013).

    Article  Google Scholar 

Download references

Author information




F.M. researched data for article, provided substantial contribution to discussion of the content and reviewed and edited the manuscript before submission. F.B. researched data for article. S.B. researched data for article, provided substantial contribution to discussion of the content and wrote, reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Francesco Meinardi or Sergio Brovelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meinardi, F., Bruni, F. & Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat Rev Mater 2, 17072 (2017).

Download citation

Further reading


Quick links