Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent perfect absorbers: linear control of light with light

Abstract

The absorption of electromagnetic energy by a material is a phenomenon that underlies many applications, including molecular sensing, photocurrent generation and photodetection. Typically, the incident energy is delivered to the system through a single channel, for example, by a plane wave incident on one side of an absorber. However, absorption can be made much more efficient by exploiting wave interference. A coherent perfect absorber is a system in which the complete absorption of electromagnetic radiation is achieved by controlling the interference of multiple incident waves. Here, we review recent advances in the design and applications of such devices. We present the theoretical principles underlying the phenomenon of coherent perfect absorption and give an overview of the photonic structures in which it can be realized, including planar and guided-mode structures, graphene-based systems, parity-symmetric and time-symmetric structures, 3D structures and quantum-mechanical systems. We then discuss possible applications of coherent perfect absorption in nanophotonics, and, finally, we survey the perspectives for the future of this field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conceptual basis of coherent perfect absorption.
Figure 2: Realization of coherent perfect absorbers in planar structures.
Figure 3: Coherent perfect absorption in PT-symmetric structures.
Figure 4: Coherent perfect absorption in guided-mode structures.
Figure 5: Coherent perfect absorption in the quantum regime.
Figure 6: Applications of coherent perfect absorbers.

References

  1. 1

    Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley, 2013).

    Google Scholar 

  2. 2

    Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

    Google Scholar 

  3. 3

    Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, 1990).

    Google Scholar 

  4. 4

    Salisbury, W. Absorbent body for electromagnetic waves. US Patent 2599944 (1952).

  5. 5

    Fante, R. L. & McCormack, M. T. Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag. 36, 1443–1454 (1988).

    Article  Google Scholar 

  6. 6

    Gorodetsky, M. & Ilchenko, V. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Chong, Y. D., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Ra’di, Y., Simovski, C. R. & Tretyakov, S. A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015).

    Article  CAS  Google Scholar 

  9. 9

    Kats, M. A. & Capasso, F. Optical absorbers based on strong interference in ultra-thin films. Laser Photonics Rev. 749, 735–749 (2016).

    Article  CAS  Google Scholar 

  10. 10

    Vinoy, K. & Jha, R. Radar Absorbing Materials — From Theory to Design and Characterization. (Kluwer Academic Publishers, 1996).

    Book  Google Scholar 

  11. 11

    Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Kravets, V. G. et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 12, 304–309 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Luque, A. & Hegedus, S. Handbook of Photovoltaic Science and Engineering (Wiley, 2008).

    Google Scholar 

  14. 14

    Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391–400 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Cai, M., Painter, O. & Vahala, K. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Tischler, J., Bradley, M. & Bulovic, V. Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Opt. Lett. 31, 2045–2047 (2006).

    Article  Google Scholar 

  18. 18

    Nefedov, I. S., Valagiannopoulos, C. A., Hashemi, S. M. & Nefedov, E. I. Total absorption in asymmetric hyperbolic media. Sci. Rep. 3, 2662 (2013).

    Article  Google Scholar 

  19. 19

    Baranov, D. G., Edgar, J. H., Hoffman, T., Bassim, N. & Caldwell, J. D. Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal. Phys. Rev. B 92, 201405(R) (2015).

    Article  CAS  Google Scholar 

  20. 20

    Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Zhang, J., MacDonald, K. F. & Zheludev, N. I. Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012).

    Article  CAS  Google Scholar 

  22. 22

    Fang, X., MacDonald, K. F. & Zheludev, N. I. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci. Appl. 4, e292 (2015).

    Article  Google Scholar 

  23. 23

    Papaioannou, M., Plum, E., Valente, J., Rogers, E. T. & Zheludev, N. I. Two-dimensional control of light with light on metasurfaces. Light Sci. Appl. 5, e16070 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Wei, P., Croënne, C., Tak Chu, S. & Li, J. Symmetrical and anti-symmetrical coherent perfect absorption for acoustic waves. Appl. Phys. Lett. 104, 102–106 (2014).

    Google Scholar 

  25. 25

    Song, J. Z., Bai, P., Hang, Z. H. & Lai, Y. Acoustic coherent perfect absorbers. New J. Phys. 16, 033026 (2014).

    Article  Google Scholar 

  26. 26

    Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Duan, Y. et al. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films. Sci. Rep. 5, 12139 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Zanotto, S. et al. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption. Nat. Phys. 10, 830–834 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Roger, T. et al. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun. 6, 7031 (2015).

    Article  Google Scholar 

  30. 30

    Lee, P. & Fisher, D. Anderson localization in two dimensions. Phys. Rev. Lett. 47, 882–885 (1981).

    CAS  Article  Google Scholar 

  31. 31

    Sentenac, A., Chaumet, P. C. & Leuchs, G. Total absorption of light by a nanoparticle: an electromagnetic sink in the optical regime. Opt. Lett. 38, 818–820 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Jin, J.-M. The Finite Element Method in Electromagnetics, 3rd ed. (Wiley–IEEE Press, 2014).

    Google Scholar 

  33. 33

    Poladian, L. Resonance mode expansions and exact solutions for nonuniform gratings. Phys. Rev. E 54, 2963–2975 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non- orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Kang, M. et al. Polarization-independent coherent perfect absorption by a dipole-like meta-surface. Opt. Lett. 38, 3086–3088 (2013).

    Article  Google Scholar 

  36. 36

    Kang, M., Chong, Y. D., Wang, H. T., Zhu, W. & Premaratne, M. Critical route for coherent perfect absorption in a Fano resonance plasmonic system. Appl. Phys. Lett. 105, 131103 (2014).

    Article  CAS  Google Scholar 

  37. 37

    Zhu, W., Xiao, F., Kang, M. & Premaratne, M. Coherent perfect absorption in an all-dielectric metasurface. Appl. Phys. Lett. 108, 121901 (2016).

    Article  CAS  Google Scholar 

  38. 38

    Weinstein, L. A. Open Resonators and Open Waveguides (Golem Press, 1969).

    Google Scholar 

  39. 39

    Haken, H. Light: Laser Dynamics Vol. 2, (North-Holland Phys. Publishing, 1985).

    Google Scholar 

  40. 40

    Ge, L., Chong, Y. D. & Stone, A. D. Steady-state ab initio laser theory: generalizations and analytic results. Phys. Rev. A 82, 063824 (2010).

    Article  CAS  Google Scholar 

  41. 41

    Nireekshan Reddy, K. & Dutta Gupta, S. Light-controlled perfect absorption of light. Opt. Lett. 38 5252–5255 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Reddy, K. N., Gopal, A. V. & Gupta, S. D. Nonlinearity induced critical coupling. Opt. Lett. 38, 2517–2520 (2013).

    Article  Google Scholar 

  43. 43

    Mungan, C. & Gosnell, T. Laser cooling of solids. Adv. At. Mol. Opt. Phys. 40, 161–228 (1981).

    Article  Google Scholar 

  44. 44

    Baldacci, L., Zanotto, S., Biasiol, G., Sorba, L. & Tredicucci, A. Interferometric control of absorption in thin plasmonic metamaterials: general two port theory and broadband operation. Opt. Express 23, 9202–9210 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Piper, J. R., Liu, V. & Fan, S. Total absorption by degenerate critical coupling. Appl. Phys. Lett. 104, 251110 (2014).

    Article  CAS  Google Scholar 

  46. 46

    Piper, J. R. & Fan, S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1, 347–353 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Zanotto, S. et al. Coherent absorption of light by graphene and other optically conducting surfaces in realistic on-substrate configurations. APL Photonics 2, 016101 (2017).

    Article  CAS  Google Scholar 

  48. 48

    Luo, J., Li, S., Hou, B. & Lai, Y. Unified theory for perfect absorption in ultra-thin absorptive films with reflectors. Phys. Rev. B 90, 165128 (2014).

    Article  CAS  Google Scholar 

  49. 49

    Liu, F., Chong, Y. D., Adam, S. & Polini, M. Gate-tunable coherent perfect absorption of terahertz radiation in graphene. 2D Mater. 1, 031001 (2014).

    Article  CAS  Google Scholar 

  50. 50

    Li, S. et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301 (2015).

    Article  CAS  Google Scholar 

  51. 51

    Li, S. et al. An equivalent realization of coherent perfect absorption under single beam illumination. Sci. Rep. 4, 7369 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Longhi, S. Backward lasing yields a perfect absorber. Physics 3, 61 (2010).

    Article  Google Scholar 

  53. 53

    Gmachl, C. F. Laser science: suckers for light. Nature 467, 37–39 (2010).

    CAS  Article  Google Scholar 

  54. 54

    Dutta-Gupta, S., Martin, O. J. F., Gupta, S. D. & Agarwal, G. S. Controllable coherent perfect absorption in a composite film. Opt. Express 20, 1330–1336 (2012).

    Article  Google Scholar 

  55. 55

    Pu, M. et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012).

    CAS  Article  Google Scholar 

  56. 56

    Villinger, M. L., Bayat, M., Pye, L. N. & Abouraddy, A. F. Analytical model for coherent perfect absorption in one-dimensional photonic structures. Opt. Lett. 40, 5550–5553 (2015).

    CAS  Article  Google Scholar 

  57. 57

    Yoon, J. W., Koh, G. M., Song, S. H. & Magnusson, R. Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating. Phys. Rev. Lett. 109, 257402 (2012).

    Article  CAS  Google Scholar 

  58. 58

    Dutta-Gupta, S., Deshmukh, R., Venu Gopal, A., Martin, O. J. F. & Gupta, S. D. Coherent perfect absorption mediated anomalous reflection and refraction. Opt. Lett. 37, 4452–4454 (2012).

    Article  Google Scholar 

  59. 59

    Jung, M. J., Han, C., Yoon, J. W. & Song, S. H. Temperature and gain tuning of plasmonic coherent perfect absorbers. Opt. Express 23, 19837–19845 (2015).

    CAS  Article  Google Scholar 

  60. 60

    Bergman, D. & Stockman, M. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article  CAS  Google Scholar 

  61. 61

    Giese, J. A. et al. Guided-mode resonant coherent light absorbers. Opt. Lett. 39, 486–488 (2014).

    CAS  Article  Google Scholar 

  62. 62

    Yoon, J. W., Jung, M. J. & Song, S. H. Gain-assisted critical coupling for high-performance coherent perfect absorbers. Opt. Lett. 40, 2309–2312 (2015).

    CAS  Article  Google Scholar 

  63. 63

    Fang, X. et al. Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl. Phys. Lett. 104, 141102 (2014).

    Article  CAS  Google Scholar 

  64. 64

    Nie, G., Shi, Q., Zhu, Z. & Shi, J. Selective coherent perfect absorption in metamaterials. Appl. Phys. Lett. 105, 201909 (2014).

    Article  CAS  Google Scholar 

  65. 65

    Fang, X., MacDonald, K. F., Plum, E. & Zheludev, N. I. Coherent control of light–matter interactions in polarization standing waves. Sci. Rep. 6, 31141 (2016).

    CAS  Article  Google Scholar 

  66. 66

    Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889–898 (2014).

    CAS  Article  Google Scholar 

  67. 67

    Urade, Y., Nakata, Y., Nakanishi, T. & Kitano, M. Broadband and energy-concentrating terahertz coherent perfect absorber based on a selfcomplementary metasurface. Opt. Lett. 41, 4472–4475 (2016).

    CAS  Article  Google Scholar 

  68. 68

    Mousavi, S. A., Plum, E., Shi, J. & Zheludev, N. I. Coherent control of optical polarization effects in metamaterials. Sci. Rep. 5, 8977 (2015).

    CAS  Article  Google Scholar 

  69. 69

    Mousavi, S. A., Plum, E., Shi, J. & Zheludev, N. I. Coherent control of birefringence and optical activity. Appl. Phys. Lett. 105, 011906 (2014).

    Article  CAS  Google Scholar 

  70. 70

    Shi, J. et al. Coherent control of Snell's law at metasurfaces. Opt. Express 22, 21051–21060 (2014).

    Article  Google Scholar 

  71. 71

    Fang, X., Tseng, M. L., Tsai, D. P. & Zheludev, N. I. Coherent excitation-selective spectroscopy of multipole resonances. Phys. Rev. Appl. 5, 014010 (2016).

    Article  CAS  Google Scholar 

  72. 72

    Tseng, M. L. et al. Coherent selection of invisible high-order electromagnetic excitations. Sci. Rep. 7, 44488 (2017).

    Article  Google Scholar 

  73. 73

    Fan, Y., Zhang, F., Zhao, Q., Wei, Z. & Li, H. Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt. Lett. 39, 6269–6272 (2014).

    Article  CAS  Google Scholar 

  74. 74

    Rao, S. M., Heitz, J. J. F., Roger, T., Westerberg, N. & Faccio, D. Coherent control of light interaction with graphene. Opt. Lett. 39, 5345–5347 (2014).

    Article  CAS  Google Scholar 

  75. 75

    Fan, Y. et al. Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Sci. Rep. 5, 13956 (2015).

    CAS  Article  Google Scholar 

  76. 76

    Wang, J. & Hu, X. Recent advances in graphene-assisted nonlinear optical signal processing. J. Nanotechnol. 2016, 7031913 (2016).

    Google Scholar 

  77. 77

    Rao, S. M. et al. Geometries for the coherent control of four-wave mixing in graphene multilayers. Sci. Rep. 5, 15399 (2015).

    CAS  Article  Google Scholar 

  78. 78

    Koppens, F. H., Chang, D. E. & de Abajo, F. J. G. Graphene plasmonics: a plaftform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011).

    CAS  Article  Google Scholar 

  79. 79

    Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  CAS  Google Scholar 

  80. 80

    Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    CAS  Article  Google Scholar 

  81. 81

    Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

    CAS  Article  Google Scholar 

  82. 82

    Zhang, J. et al. Coherent perfect absorption and transparency in a nanostructured graphene film. Opt. Express 22, 12524–12532 (2014).

    Article  CAS  Google Scholar 

  83. 83

    Chong, Y. D., Cao, H. & Stone, A. D. Noise properties of coherent perfect absorbers and critically coupled resonators. Phys. Rev. A 87, 013843 (2013).

    Article  CAS  Google Scholar 

  84. 84

    Wu, H. & Xiao, M. White-light cavity with competing linear and nonlinear dispersions. Phys. Rev. A 77, 031801(R) (2008).

    Article  CAS  Google Scholar 

  85. 85

    Kotlicki, O. & Scheuer, J. Wideband coherent perfect absorber based on white-light cavity. Opt. Lett. 39, 6624–6627 (2014).

    Article  Google Scholar 

  86. 86

    Kim, T. Y. et al. General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films. Sci. Rep. 6, 22941 (2016).

    CAS  Article  Google Scholar 

  87. 87

    Pye, L. N. et al. Octave-spanning coherent perfect absorption in a thin silicon film. Opt. Lett. 42, 151–154 (2016).

    Article  Google Scholar 

  88. 88

    Vasic, B. & Gajic, R. Enhanced phase sensitivity of metamaterial absorbers near the point of darkness. J. Appl. Phys. 116, 023102 (2014).

    Article  CAS  Google Scholar 

  89. 89

    Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    CAS  Article  Google Scholar 

  90. 90

    Luk’yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    Article  CAS  Google Scholar 

  91. 91

    Yu, S., Piao, X., Hong, J. & Park, N. Progress toward high-Q perfect absorption: a Fano antilaser. Phys. Rev. A 92, 011802(R) (2015).

    Article  CAS  Google Scholar 

  92. 92

    Klimov, V., Sun, S. & Guo, G. Y. Coherent perfect nanoabsorbers based on negative refraction. Opt. Express 20, 13071 (2012).

    Article  Google Scholar 

  93. 93

    Monticone, F., Valagiannopoulos, C. A. & Alu, A. Parity-time symmetric nonlocal meta-surfaces: all-angle negative refraction and volumetric imaging. Phys. Rev. X 6, 041018 (2016).

    Google Scholar 

  94. 94

    Ye, Y., Hay, D. & Shi, Z. Coherent perfect absorption in chiral metamaterials. Opt. Lett. 41, 3359 (2016).

    CAS  Article  Google Scholar 

  95. 95

    Kang, M. & Chong, Y. Coherent optical control of polarization with a critical metasurface. Phys. Rev. A 92, 043826 (2015).

    Article  CAS  Google Scholar 

  96. 96

    Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    CAS  Article  Google Scholar 

  97. 97

    Bender, C. M., Brody, D. C. & Jones, H. F. Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002).

    Article  CAS  Google Scholar 

  98. 98

    Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

    CAS  Article  Google Scholar 

  99. 99

    Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    CAS  Article  Google Scholar 

  100. 100

    Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  CAS  Google Scholar 

  101. 101

    Zyablovsky, A. A., Vinogradov, A. P., Pukhov, A. A., Dorofeenko, A. V. & Lisyansky, A. A. PT-symmetry in optics. Phys.-Usp. 57, 1063–1082 (2014).

    Article  Google Scholar 

  102. 102

    Longhi, S. PT-symmetric laser absorber. Phys. Rev. A 82, 031801(R) (2010).

    Article  CAS  Google Scholar 

  103. 103

    Chong, Y. D., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011).

    CAS  Article  Google Scholar 

  104. 104

    Longhi, S. & Feng, L. PT-symmetric microring laser-absorber. Opt. Lett. 39, 5026–5029 (2014).

    Article  Google Scholar 

  105. 105

    Sun, Y., Tan, W., Li, H. Q., Li, J. & Chen, H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014).

    Article  CAS  Google Scholar 

  106. 106

    Gu, Z. et al. Experimental demonstration of PT-symmetric stripe lasers. Laser Photonics Rev. 10, 588–594 (2016).

    CAS  Article  Google Scholar 

  107. 107

    Wong, Z. J. et al. Lasing and anti-lasing in a single cavity. Nat. Photonics 10, 796–801 (2016).

    CAS  Article  Google Scholar 

  108. 108

    Hang, C., Huang, G. & Konotop, V. V. Tunable spectral singularities: coherent perfect absorber and laser in an atomic medium. New. J. Phys. 18, 085003 (2016).

    Article  Google Scholar 

  109. 109

    Baum, B., Alaeian, H. & Dionne, J. A parity–time symmetric coherent plasmonic absorber-amplifier. J. Appl. Phys. 117, 063106 (2015).

    Article  CAS  Google Scholar 

  110. 110

    Bai, P. et al. Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss. Phys. Rev. A 94, 063841 (2016).

    Article  Google Scholar 

  111. 111

    Gutman, N., Sukhorukov, A. A., Chong, Y. D. & de Sterke, C. M. Coherent perfect absorption and reflection in slow-light waveguides. Opt. Lett. 38, 4970–4973 (2013).

    Article  Google Scholar 

  112. 112

    Bruck, R. & Muskens, O. L. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches. Opt. Express 21, 27652–27661 (2013).

    Article  Google Scholar 

  113. 113

    Park, H., Lee, S. Y., Kim, J., Lee, B. & Kim, H. Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide. Opt. Express 23, 24464–24474 (2015).

    CAS  Article  Google Scholar 

  114. 114

    Grote, R. R., Driscoll, J. B. & Osgood, R. M. Integrated optical modulators and switches using coherent perfect loss. Opt. Lett. 38, 3001–3004 (2013).

    Article  Google Scholar 

  115. 115

    Zanotto, S. & Melloni, A. Design of a hybrid silicon-plasmonic co-propagating coupler operating close to coherent perfect absorption. J. Appl. Phys. 119, 163103 (2016).

    Article  CAS  Google Scholar 

  116. 116

    Stegeman, G. I., Maradudin, A. A. & Rahman, T. S. Refraction of a surface polariton by an interface. Phys. Rev. B 23, 2576–2585 (1981).

    Article  Google Scholar 

  117. 117

    Ignatov, A. I., Nechepurenko, I. A. & Baranov, D. G. Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons. Ann. Phys. (Berlin) 528, 537–542 (2016).

    CAS  Article  Google Scholar 

  118. 118

    Elser, J. & Podolskiy, V. A. Scattering-free plasmonic optics with anisotropic metamaterials. Phys. Rev. Lett. 100, 066402 (2008).

    Article  CAS  Google Scholar 

  119. 119

    Rothenberg, J. M. et al. Experimental demonstration of coherent perfect absorption in a silicon photonic racetrack resonator. Opt. Lett. 41, 2537–2540 (2016).

    CAS  Article  Google Scholar 

  120. 120

    Malara, P. et al. Super-resonant intracavity coherent absorption. Sci. Rep. 6, 28947 (2016).

    CAS  Article  Google Scholar 

  121. 121

    Noh, H., Chong, Y., Stone, A. D. & Cao, H. Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108, 186805 (2012).

    Article  CAS  Google Scholar 

  122. 122

    Noh, H., Popoff, S. M. & Cao, H. Broadband subwavelength focusing of light using a passive sink. Opt. Express 21, 17435–17446 (2013).

    Article  Google Scholar 

  123. 123

    Mostafazadeh, A. & Sarisaman, M. Optical spectral singularities and coherent perfect absorption in a two-layer spherical medium. Proc. R. Soc. A 468, 3224–3246 (2012).

    Article  Google Scholar 

  124. 124

    Bai, P., Wu, Y. & Lai, Y. Multi-channel coherent perfect absorbers. Europhys. Lett. 114, 28003 (2016).

    Article  CAS  Google Scholar 

  125. 125

    Li, H., Suwunnarat, S., Fleischmann, R., Schanz, H. & Kottos, T. Random matrix theory approach to chaotic coherent perfect absorbers. Phys. Rev. Lett. 118, 044101 (2017).

    Article  Google Scholar 

  126. 126

    Chong, Y. D. & Stone, A. D. Hidden black: coherent enhancement of absorption in strongly scattering media. Phys. Rev. Lett. 107, 163901 (2011).

    CAS  Article  Google Scholar 

  127. 127

    Goetschy, A. & Stone, A. D. Filtering random matrices: the effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 063901 (2013).

    CAS  Article  Google Scholar 

  128. 128

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  Google Scholar 

  129. 129

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    CAS  Article  Google Scholar 

  130. 130

    Caves, C. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  Google Scholar 

  131. 131

    Barnett, S., Jeffers, J., Gatti, A. & Loudon, R. Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134–2145 (1998).

    CAS  Article  Google Scholar 

  132. 132

    Jeffers, J. Interference and the lossless lossy beam splitter. J. Mod. Opt. 47, 1819–1824 (2009).

    Article  Google Scholar 

  133. 133

    Huang, S. & Agarwal, G. S. Coherent perfect absorption of path entangled single photons. Opt. Express 17, 20936–20947 (2014).

    Article  Google Scholar 

  134. 134

    Vest, B. et al. Anti-coalescence of bosons on a lossy beam splitter. Science 356, 1373–1376 (2017).

    CAS  Article  Google Scholar 

  135. 135

    Roger, T. et al. Coherent absorption of N00N states. Phys. Rev. Lett. 117, 023601 (2016).

    Article  CAS  Google Scholar 

  136. 136

    Altuzarra, C. et al. Coherent perfect absorption in metamaterials with entangled photons. ACS Photonicshttp://dx.doi.org/10.1021/acsphotonics.7b00514 (2017).

  137. 137

    Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    Article  Google Scholar 

  138. 138

    Longhi, S. Coherent perfect absorption in a homogeneously broadened two-level medium. Phys. Rev. A 83, 055804 (2011).

    Article  CAS  Google Scholar 

  139. 139

    Agarwal, G. S., Di, K., Wang, L. & Zhu, Y. Perfect photon absorption in the nonlinear regime of cavity quantum electrodynamics. Phys. Rev. A 93, 063805 (2016).

    Article  CAS  Google Scholar 

  140. 140

    Papaioannou, M., Plum, E., Valente, J., Rogers, E. T. F. & Zheludev, N. I. All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. APL Photonics 1, 090801 (2016).

    Article  Google Scholar 

  141. 141

    Papaioannou, M., Plum, E. & Zheludev, N. I. All-optical pattern recognition and image processing on a metamaterial beam splitter. ACS Photonics 4, 217–222 (2017).

    CAS  Article  Google Scholar 

  142. 142

    Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011).

    Article  CAS  Google Scholar 

  143. 143

    Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2012).

    Article  CAS  Google Scholar 

  144. 144

    Wu, J. H., Artoni, M. & La Rocca, G. C. Coherent perfect absorption in one-sided reflectionless media. Sci. Rep. 6, 35356 (2016).

    CAS  Article  Google Scholar 

  145. 145

    Zhao, H. et al. Metawaveguide for asymmetric interferometric light-light switching. Phys. Rev. Lett. 117, 193901 (2016).

    Article  Google Scholar 

  146. 146

    Liew, S. F. et al. Coherent control of photocurrent in a strongly scattering photoelectrochemical system. ACS Photonics 3, 449–455 (2016).

    CAS  Article  Google Scholar 

  147. 147

    Pirruccio, G., Ramezani, M., Rodriguez, S. R. K. & Rivas, J. G. Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer. Phys. Rev. Lett. 116, 103002 (2016).

    Article  CAS  Google Scholar 

  148. 148

    Cummer, S. A., Christensen, J. & Alu, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mat. 1, 16001 (2016).

    Article  Google Scholar 

  149. 149

    Meng, C., Zhang, X., Tang, S. T., Yang, M. & Yang, Z. Acoustic coherent perfect absorbers as sensitive null detectors. Sci. Rep. 7, 43574 (2017).

    Article  Google Scholar 

  150. 150

    Chu, S. & Townes, C. H. Biographical Memoirs, Vol. 83 (National Academy of Sciences, 2003).

    Google Scholar 

  151. 151

    Reddy, K. N. & Gupta, S. D. Gap solitons with null-scattering. Opt. Lett. 39, 2254–2257 (2014).

    Article  Google Scholar 

  152. 152

    Longhi, S. Time-reversed optical parametric oscillation. Phys. Rev. Lett. 107, 033901 (2011).

    Article  CAS  Google Scholar 

  153. 153

    Schackert, F., Roy, A., Hatridge, M., Devoret, M. H. & Stone, A. D. Three-wave mixing with three incoming waves: signal-idler coherent attenuation and gain enhancement in a parametric amplifier. Phys. Rev. Lett. 111, 073903 (2013).

    Article  CAS  Google Scholar 

  154. 154

    Zheng, Y., Ren, H., Wan, W. & Chen, X. Time-reversed wave mixing in nonlinear optics. Sci. Rep. 3, 3245 (2013).

    Article  Google Scholar 

  155. 155

    Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717–754 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

D.G.B. and T.S. acknowledge support from the Knut and Alice Wallenberg Foundation. D.G.B. acknowledges support from the Ministry of Education and Science of the Russian Federation (3.1668.2017/4.6). T.S. acknowledges financial support from the Swedish Research Council (Vetenskapsområdet, grant no. 2012–0414). A.A. and A.K. acknowledge support from the Air Force Office of Scientific Research (grant no. FA9550-17-1-0002) and the Welch Foundation (grant no. F-1802). Y.D.C. is grateful to A.D. Stone, H. Cao, L. Ge and A. Cerjan for numerous stimulating and deep discussions, and acknowledges support from the Singapore MOE Academic Research Fund Tier 2 (grant no. MOE2015-T2-2-008) and the Singapore MOE Academic Research Fund Tier 3 (grant no. MOE2011-T3-1-005).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Denis G. Baranov or Yidong Chong.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baranov, D., Krasnok, A., Shegai, T. et al. Coherent perfect absorbers: linear control of light with light. Nat Rev Mater 2, 17064 (2017). https://doi.org/10.1038/natrevmats.2017.64

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing