Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

2D transition metal dichalcogenides

Abstract

Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure and electronic properties of TMCDs.
Figure 2: Correlated and topological phases of TMDCs.
Figure 3: Growth methods for the synthesis of ultrathin TMDCs.
Figure 4: Examples of synthesis of 2D TMDC lateral heterostructures.
Figure 5: Mobility in TMDC-based devices.
Figure 6: Strain engineering in TMDC-based devices.

References

  1. 1

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  4. 4

    Dickinson, R. G. & Pauling, L. The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923).

    CAS  Article  Google Scholar 

  5. 5

    Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    CAS  Article  Google Scholar 

  6. 6

    Frindt, R. F. & Yoffe, A. D. Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273, 69–83 (1963).

    Article  Google Scholar 

  7. 7

    Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    CAS  Article  Google Scholar 

  8. 8

    Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444–446 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222–225 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

    CAS  Article  Google Scholar 

  13. 13

    Hill, H. M., Rigosi, A. F., Rim, K. T., Flynn, G. W. & Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 16, 4837–4837 (2016).

    Article  CAS  Google Scholar 

  14. 14

    Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article  CAS  Google Scholar 

  15. 15

    Andor, K. et al. k · p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 2053–1583 (2015).

    Google Scholar 

  16. 16

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  CAS  Google Scholar 

  17. 17

    Pulkin, A. & Yazyev, O. V. Spin- and valley-polarized transport across line defects in monolayer MoS2 . Phys. Rev. B 93, 041419 (2016).

    Article  CAS  Google Scholar 

  18. 18

    Habe, T. & Koshino, M. Spin-dependent refraction at the atomic step of transition-metal dichalcogenides. Phys. Rev. B 91, 201407 (2015).

    Article  CAS  Google Scholar 

  19. 19

    Peierls, S. R. E. Quantum Theory of Solids (Clarendon Press, 1955).

    Google Scholar 

  20. 20

    Frohlich, H. On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. A 223, 305 (1954).

    Google Scholar 

  21. 21

    Chan, S.-K. & Heine, V. Spin density wave and soft phonon mode from nesting Fermi surfaces. J. Phys. F Met. Phys. 3, 795–809 (1973).

    CAS  Article  Google Scholar 

  22. 22

    Lomer, W. M. Electronic structure of chromium group metals. Proc. Phys. Soc. 80, 489–496 (1962).

    CAS  Article  Google Scholar 

  23. 23

    Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 37, C4-139–C4-150 (1974).

    Google Scholar 

  24. 24

    Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 50, 1171–1248 (2010).

    Article  Google Scholar 

  25. 25

    Moncton, D. E., Axe, J. D. & Di Salvo, F. J. Neutron scattering study of the charge-density wave transitions in 2H-TaSe2 and 2H-NbSe2 . Phys. Rev. B 16, 801–819 (1977).

    CAS  Article  Google Scholar 

  26. 26

    Di Salvo, J., Francis, J. & Rice, T. M. Charge-density waves in transition-metal compounds. Phys. Today 32, 32–38 (1979).

    CAS  Article  Google Scholar 

  27. 27

    Revolinsky, E., Spiering, G. A. & Beerntsen, D. J. Superconductivity in the niobium–selenium system. J. Phys. Chem. Solids 26, 1029–1034 (1965).

    CAS  Article  Google Scholar 

  28. 28

    Perfetti, L., Gloor, T. A., Mila, F., Berger, H. & Grioni, M. Unexpected periodicity in the quasi-two-dimensional Mott insulator 1T-TaS2 revealed by angle-resolved photoemission. Phys. Rev. B 71, 153101 (2005).

    Article  CAS  Google Scholar 

  29. 29

    Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nat. Mater. 7, 960–965 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Calandra, M. 2D materials: charge density waves go nano. Nat. Nanotechnol. 10, 737–738 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Calandra, M., Mazin, I. I. & Mauri, F. Effect of dimensionality on the charge-density wave in few-layer 2H-NbSe2 . Phys. Rev. B 80, 241108 (2009).

    Article  CAS  Google Scholar 

  32. 32

    Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nat. Nanotechnol. 10, 765–769 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2 . Nat. Phys. 12, 92–97 (2016).

    CAS  Article  Google Scholar 

  34. 34

    Ge, Y. & Liu, A. Y. Effect of dimensionality and spin–orbit coupling on charge-density-wave transition in 2H-TaSe2 . Phys. Rev. B 86, 104101 (2012).

    Article  CAS  Google Scholar 

  35. 35

    Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2 . Nat. Nanotechnol. 10, 270–276 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Hovden, R. et al. Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2). Proc. Natl Acad. Sci. USA 113, 11424 (2016).

    Article  Google Scholar 

  37. 37

    Albertini, O. R. et al. Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS2: detection of the commensurate charge density wave phase through Raman scattering. Phys. Rev. B 93, 214109 (2016).

    Article  CAS  Google Scholar 

  38. 38

    Sugawara, K. et al. Unconventional charge-density-wave transition in monolayer 1T-TiSe2 . ACS Nano 10, 1341–1345 (2016).

    CAS  Article  Google Scholar 

  39. 39

    Chen, P. et al. Dimensional effects on the charge density waves in ultrathin films of TiSe2 . Nano Lett. 16, 6331–6336 (2016).

    CAS  Article  Google Scholar 

  40. 40

    Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).

    CAS  Article  Google Scholar 

  41. 41

    Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

    Article  Google Scholar 

  42. 42

    Guillamón, I. et al. Superconducting density of states and vortex cores of 2H-NbS2 . Phys. Rev. Lett. 101, 166407 (2008).

    Article  CAS  Google Scholar 

  43. 43

    Valla, T. et al. Charge-density-wave-induced modifications to the quasiparticle self-energy in 2H-TaSe2 . Phys. Rev. Lett. 85, 4759–4762 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Nagata, S. et al. Superconductivity in the layered compound 2H-TaS2 . J. Phys. Chem. Solids 53, 1259–1263 (1992).

    CAS  Article  Google Scholar 

  45. 45

    Freitas, D. C. et al. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS2 and 2H-TaSe2 . Phys. Rev. B 93, 184512 (2016).

    Article  CAS  Google Scholar 

  46. 46

    Kusmartseva, A. F., Sipos, B., Berger, H., Forró, L. & Tutiš, E. Pressure induced superconductivity in pristine 1T-TiSe2 . Phys. Rev. Lett. 103, 236401 (2009).

    CAS  Article  Google Scholar 

  47. 47

    Morosan, E. et al. Superconductivity in CuxTiSe2 . Nat. Phys. 2, 544–550 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Wagner, K. E. et al. Tuning the charge density wave and superconductivity in CuxTaS2 . Phys. Rev. B 78, 104520 (2008).

    Article  CAS  Google Scholar 

  49. 49

    Yang, J. J. et al. Charge-orbital density wave and superconductivity in the strong spin-orbit coupled IrTe2:Pd. Phys. Rev. Lett. 108, 116402 (2012).

    CAS  Article  Google Scholar 

  50. 50

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).

    CAS  Article  Google Scholar 

  51. 51

    Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    CAS  Article  Google Scholar 

  52. 52

    Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2 . Science 350, 1353–1357 (2015).

    CAS  Article  Google Scholar 

  53. 53

    He, W.-Y., Zhou, B. T., He, J. J., Zhang, T. & Law, K. T. Nodal topological superconductivity in monolayer NbSe2. Preprint at ArXivhttps://arxiv.org/abs/1604.02867 (2016).

  54. 54

    Sharma, G. & Tewari, S. Yu-Shiba-Rusinov states and topological superconductivity in Ising paired superconductors. Phys. Rev. B 94, 094515 (2016).

    Article  CAS  Google Scholar 

  55. 55

    Zhou, B. T., Yuan, N. F. Q., Jiang, H.-L. & Law, K. T. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides. Phys. Rev. B 93, 180501 (2016).

    Article  CAS  Google Scholar 

  56. 56

    Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    CAS  Article  Google Scholar 

  57. 57

    Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 11, 339–344 (2016).

    CAS  Article  Google Scholar 

  58. 58

    Shi, W. et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).

    CAS  Article  Google Scholar 

  59. 59

    Jo, S., Costanzo, D., Berger, H. & Morpurgo, A. F. Electrostatically induced superconductivity at the surface of WS2 . Nano Lett. 15, 1197–1202 (2015).

    CAS  Article  Google Scholar 

  60. 60

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  61. 61

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Article  Google Scholar 

  62. 62

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    CAS  Article  Google Scholar 

  63. 63

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    CAS  Article  Google Scholar 

  64. 64

    Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  CAS  Google Scholar 

  65. 65

    Knez, I., Du, R.-R. & Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 107, 136603 (2011).

    Article  CAS  Google Scholar 

  66. 66

    Sabater, C. et al. Topologically protected quantum transport in locally exfoliated bismuth at room temperature. Phys. Rev. Lett. 110, 176802 (2013).

    CAS  Article  Google Scholar 

  67. 67

    Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    CAS  Article  Google Scholar 

  68. 68

    Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2 . Nature 514, 205–208 (2014).

    CAS  Article  Google Scholar 

  69. 69

    Pletikosic´, I., Ali, M. N., Fedorov, A. V., Cava, R. J. & Valla, T. Electronic structure basis for the extraordinary magnetoresistance in WTe2 . Phys. Rev. Lett. 113, 216601 (2014).

    Article  CAS  Google Scholar 

  70. 70

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    CAS  Article  Google Scholar 

  71. 71

    Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    Article  CAS  Google Scholar 

  72. 72

    Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2 . Phys. Rev. B 92, 161107 (2015).

    Article  CAS  Google Scholar 

  73. 73

    Bruno, F. Y. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2 . Phys. Rev. B 94, 121112 (2016).

    Article  Google Scholar 

  74. 74

    Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2 . Phys. Rev. X 6, 031021 (2016).

    Google Scholar 

  75. 75

    Huang, Y. - Preparation, S. Electrical and modulation optical properties of 2H-MoSe2 . Chin. J. Phys. 22, 43–53 (1984).

    Google Scholar 

  76. 76

    Schäfer, H. Chemical transport reactions. (Academic Press, 1964).

    Google Scholar 

  77. 77

    Benameur, M. M. et al. Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2011).

    CAS  Article  Google Scholar 

  78. 78

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  79. 79

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    CAS  Article  Google Scholar 

  80. 80

    Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  CAS  Google Scholar 

  81. 81

    Dines, M. B. Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides. Mater. Res. Bull. 10, 287–291 (1975).

    CAS  Article  Google Scholar 

  82. 82

    Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    CAS  Article  Google Scholar 

  83. 83

    Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    CAS  Article  Google Scholar 

  84. 84

    Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 65, 125407 (2002).

    Article  CAS  Google Scholar 

  85. 85

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    CAS  Article  Google Scholar 

  86. 86

    Joyce, B. A. Molecular beam epitaxy. Rep. Prog. Phys. 48, 1637–1697 (1985).

    CAS  Article  Google Scholar 

  87. 87

    Koma, A. & Yoshimura, K. Ultrasharp interfaces grown with van der waals epitaxy. Surf. Sci. 174, 556–560 (1986).

    CAS  Article  Google Scholar 

  88. 88

    Ohuchi, F. S., Shimada, T., Parkinson, B. A., Ueno, K. & Koma, A. Growth of MoSe2 thin-films with Van der Waals epitaxy. J. Cryst. Growth 111, 1033–1037 (1991).

    CAS  Article  Google Scholar 

  89. 89

    Ohuchi, F. S., Parkinson, B. A., Ueno, K. & Koma, A. Van der Waals epitaxial growth and characterization of MoSe2 thin films on SnS2 . J. Appl. Phys. 68, 2168–2175 (1990).

    CAS  Article  Google Scholar 

  90. 90

    Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201–202, 236–241 (1999).

    Article  Google Scholar 

  91. 91

    Dumcenco, D. et al. Large-area epitaxial monolayer MoS2 . ACS Nano 9, 4611–4620 (2015).

    CAS  Article  Google Scholar 

  92. 92

    Lehtinen, O. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2 . ACS Nano 9, 3274–3283 (2015).

    CAS  Article  Google Scholar 

  93. 93

    Roy, A. et al. Structural and electrical properties of MoTe2 and MoSe2 grown by molecular beam epitaxy. ACS Appl. Mater. Interfaces 8, 7396–7402 (2016).

    CAS  Article  Google Scholar 

  94. 94

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    CAS  Article  Google Scholar 

  95. 95

    Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2 . Nat. Phys. 12, 751–756 (2016).

    CAS  Article  Google Scholar 

  96. 96

    Aretouli, K. E. et al. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 8, 23222–23229 (2016).

    CAS  Article  Google Scholar 

  97. 97

    Xenogiannopoulou, E. et al. High-quality, large-area MoSe2 and MoSe2/Bi2Se3 heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale 7, 7896–7905 (2015).

    CAS  Article  Google Scholar 

  98. 98

    Vishwanath, S. et al. Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Mater. 2, 024007 (2015).

    Article  CAS  Google Scholar 

  99. 99

    Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    CAS  Article  Google Scholar 

  100. 100

    Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    CAS  Article  Google Scholar 

  101. 101

    Shi, Y. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

    CAS  Article  Google Scholar 

  102. 102

    Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    CAS  Article  Google Scholar 

  103. 103

    Najmaei, S. et al. Vapor phase growth and grain boundary structure of molybdenum disulfide atomic layers. Nat. Mater. 12, 754–759 (2013).

    CAS  Article  Google Scholar 

  104. 104

    van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    CAS  Article  Google Scholar 

  105. 105

    Zou, X., Liu, Y. & Yakobson, B. I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2012).

    Article  CAS  Google Scholar 

  106. 106

    Najmaei, S. et al. Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 8, 7930–7937 (2014).

    CAS  Article  Google Scholar 

  107. 107

    Chung, J.-W., Dai, Z. R. & Ohuchi, F. S. WS2 thin films by metal organic chemical vapor deposition. J. Cryst. Growth 186, 137–150 (1998).

    CAS  Article  Google Scholar 

  108. 108

    Dumcenco, D. et al. Large-area MoS2 grown using H2S as the sulphur source. 2D Mater. 2, 044005 (2015).

    Article  CAS  Google Scholar 

  109. 109

    Eichfeld, S. M. et al. Highly scalable, atomically thin WSe2 grown via metal–organic chemical vapor deposition. ACS Nano 9, 2080–2087 (2015).

    CAS  Article  Google Scholar 

  110. 110

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Article  Google Scholar 

  111. 111

    Wang, X. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2 . ACS Nano 8, 5125–5131 (2014).

    CAS  Article  Google Scholar 

  112. 112

    Xia, J. et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6, 8949–8955 (2014).

    CAS  Article  Google Scholar 

  113. 113

    Chang, Y.-H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014).

    CAS  Article  Google Scholar 

  114. 114

    Gao, Y. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 6, 8569 (2015).

    CAS  Article  Google Scholar 

  115. 115

    Kobayashi, Y. et al. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 9, 4056–4063 (2015).

    CAS  Article  Google Scholar 

  116. 116

    McCreary, K. M., Hanbicki, A. T., Jernigan, G. G., Culbertson, J. C. & Jonker, B. T. Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Sci. Rep. 6, 19159 (2016).

    CAS  Article  Google Scholar 

  117. 117

    Okada, M. et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 8, 8273–8277 (2014).

    CAS  Article  Google Scholar 

  118. 118

    Tan, H. et al. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 10, 7866–7873 (2016).

    CAS  Article  Google Scholar 

  119. 119

    Tanabe, I. et al. Band structure characterization of WS2 grown by chemical vapor deposition. Appl. Phys. Lett. 108, 252103 (2016).

    Article  CAS  Google Scholar 

  120. 120

    Zhang, Y. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7, 8963–8971 (2013).

    CAS  Article  Google Scholar 

  121. 121

    Chen, J. et al. Chemical vapor deposition of large-sized hexagonal WSe2 crystals on dielectric substrates. Adv. Mater. 27, 6722–6727 (2015).

    CAS  Article  Google Scholar 

  122. 122

    Liu, B. et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9, 6119–6127 (2015).

    CAS  Article  Google Scholar 

  123. 123

    Yoshida, M. et al. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano Lett. 16, 2061–2065 (2016).

    CAS  Article  Google Scholar 

  124. 124

    Keyshar, K. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 27, 4640–4648 (2015).

    CAS  Article  Google Scholar 

  125. 125

    He, X. et al. Chemical vapor deposition of high-quality and atomically layered ReS2 . Small 11, 5423–5429 (2015).

    CAS  Article  Google Scholar 

  126. 126

    Hafeez, M., Gan, L., Li, H., Ma, Y. & Zhai, T. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater. 26, 4551–4560 (2016).

    CAS  Article  Google Scholar 

  127. 127

    Hafeez, M., Gan, L., Li, H., Ma, Y. & Zhai, T. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 28, 8296–8301 (2016).

    CAS  Article  Google Scholar 

  128. 128

    Naylor, C. H. et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297–4304 (2016).

    CAS  Article  Google Scholar 

  129. 129

    Zhou, J. et al. Large-area and high-quality 2D transition metal telluride. Adv. Mat. 29, 1603471 (2017).

    Article  CAS  Google Scholar 

  130. 130

    Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    CAS  Article  Google Scholar 

  131. 131

    Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    CAS  Article  Google Scholar 

  132. 132

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS  Article  Google Scholar 

  133. 133

    Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    CAS  Article  Google Scholar 

  134. 134

    Yu, H., Kutana, A. & Yakobson, B. I. Carrier delocalization in two-dimensional coplanar p–n junctions of graphene and metal dichalcogenides. Nano Lett. 16, 5032–5036 (2016).

    CAS  Article  Google Scholar 

  135. 135

    Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  CAS  Google Scholar 

  136. 136

    Kaasbjerg, K., Thygesen, K. S. & Jauho, A.-P. Acoustic phonon limited mobility in two-dimensional semiconductors: deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 87, 235312 (2013).

    Article  CAS  Google Scholar 

  137. 137

    Zhang, W., Huang, Z., Zhang, W. & Li, Y. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2014).

    CAS  Article  Google Scholar 

  138. 138

    Li, X. et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418 (2013).

    Article  CAS  Google Scholar 

  139. 139

    Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    Google Scholar 

  140. 140

    Fivaz, R. & Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).

    CAS  Article  Google Scholar 

  141. 141

    Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2 . Nat. Mater. 12, 815–820 (2013).

    CAS  Article  Google Scholar 

  142. 142

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2 . Nano Lett. 13, 4212–4216 (2013).

    CAS  Article  Google Scholar 

  143. 143

    Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    CAS  Article  Google Scholar 

  144. 144

    Chamlagain, B. et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-c substrate. ACS Nano 8, 5079–5088 (2014).

    CAS  Article  Google Scholar 

  145. 145

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    CAS  Article  Google Scholar 

  146. 146

    Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

    CAS  Article  Google Scholar 

  147. 147

    Iqbal, M. W. et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015).

    CAS  Article  Google Scholar 

  148. 148

    Xu, S. et al. Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater. 3, 021007 (2016).

    Article  CAS  Google Scholar 

  149. 149

    Ovchinnikov, D., Allain, A., Huang, Y.-S., Dumcenco, D. & Kis, A. Electrical transport properties of single-layer WS2 . ACS Nano 8, 8174–8181 (2014).

    CAS  Article  Google Scholar 

  150. 150

    Fallahazad, B. et al. Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article  CAS  Google Scholar 

  151. 151

    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    CAS  Article  Google Scholar 

  152. 152

    Wu, Y. et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067(2012).

    CAS  Article  Google Scholar 

  153. 153

    Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

    CAS  Article  Google Scholar 

  154. 154

    Krasnozhon, D., Lembke, D., Nyffeler, C., Leblebici, Y. & Kis, A. MoS2 transistors operating at gigahertz frequencies. Nano Lett. 14, 5905–5911 (2014).

    CAS  Article  Google Scholar 

  155. 155

    Krasnozhon, D., Dutta, S., Nyffeler, C., Leblebici, Y. & Kis, A. High-frequency, scaled MoS2 transistors. IEEE Int. Electron Devices Meet.http://dx.doi.org/10.1109/IEDM.2015.7409781 (2015).

  156. 156

    Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

    CAS  Article  Google Scholar 

  157. 157

    Chang, H.-Y. et al. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28, 1818–1823 (2015).

    Article  CAS  Google Scholar 

  158. 158

    Sun, L. et al. 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6, 2553–2557 (2010).

    CAS  Article  Google Scholar 

  159. 159

    Wang, C. et al. Self-aligned, extremely high frequency III–V metal–oxide-semiconductor field-effect transistors on rigid and flexible substrates. Nano Lett. 12, 4140–4145 (2012).

    CAS  Article  Google Scholar 

  160. 160

    Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    CAS  Article  Google Scholar 

  161. 161

    Ni, Z. H. et al. Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008).

    CAS  Article  Google Scholar 

  162. 162

    Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).

    Article  CAS  Google Scholar 

  163. 163

    Johari, P. & Shenoy, V. B. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6, 5449–5456 (2012).

    CAS  Article  Google Scholar 

  164. 164

    Yue, Q. et al. Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376, 1166–1170 (2012).

    CAS  Article  Google Scholar 

  165. 165

    Shi, H., Pan, H., Zhang, Y.-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2 . Phys. Rev. B 87, 155304 (2013).

    Article  CAS  Google Scholar 

  166. 166

    Dong, L., Namburu, R. R., O’Regan, T. P., Dubey, M. & Dongare, A. M. Theoretical study on strain-induced variations in electronic properties of monolayer MoS2 . J. Mater. Sci. 49, 6762–6771 (2014).

    CAS  Article  Google Scholar 

  167. 167

    Ghorbani-Asl, M., Borini, S., Kuc, A. & Heine, T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 87, 235434 (2013).

    Article  CAS  Google Scholar 

  168. 168

    Harada, N., Sato, S. & Yokoyama, N. Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel. J. Appl. Phys. 115, 034505 (2014).

    Article  CAS  Google Scholar 

  169. 169

    Horzum, S. et al. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 . Phys. Rev. B 87, 125415 (2013).

    Article  Google Scholar 

  170. 170

    Lu, P., Wu, X., Guo, W. & Zeng, X. C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 14, 13035–13040 (2012).

    CAS  Article  Google Scholar 

  171. 171

    Scalise, E., Houssa, M., Pourtois, G., Afanas′ev, V. V. & Stesmans, A. First-principles study of strained 2D MoS2 . Phys. E 56, 416–421 (2014).

    CAS  Article  Google Scholar 

  172. 172

    Wang, L., Kutana, A. & Yakobson, B. I. Many-body and spin–orbit effects on direct-indirect band gap transition of strained monolayer MoS2 and WS2: direct-indirect band gap transition in strained monolayer MoS2 and WS2 . Ann. Phys. 526, L7–L12 (2014).

    CAS  Article  Google Scholar 

  173. 173

    Kumar, A. & Ahluwalia, P. K. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te). Phys. B (Amsterdam, Neth.) 419, 66–75 (2013).

    CAS  Article  Google Scholar 

  174. 174

    Bhattacharyya, S., Pandey, T. & Singh, A. K. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2 . Nanotechnology 25, 465701 (2014).

    Article  CAS  Google Scholar 

  175. 175

    Zhu, L. et al. Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size-dependent reduction rate. Nanotechnology 26, 465707 (2015).

    Article  CAS  Google Scholar 

  176. 176

    Rostami, H., Roldán, R., Cappelluti, E., Asgari, R. & Guinea, F. Theory of strain in single-layer transition metal dichalcogenides. Phys. Rev. B 92, 195402 (2015).

    Article  CAS  Google Scholar 

  177. 177

    Cheiwchanchamnangij, T., Lambrecht, W. R. L., Song, Y. & Dery, H. Strain effects on the spin–orbit-induced band structure splittings in monolayer MoS2 and graphene. Phys. Rev. B 88, 155404 (2013).

    Article  CAS  Google Scholar 

  178. 178

    Koskinen, P., Fampiou, I. & Ramasubramaniam, A. Density-functional tight-binding simulations of curvature-controlled layer decoupling and band-gap tuning in bilayer MoS2 . Phys. Rev. Lett. 112, 186802 (2014).

    Article  CAS  Google Scholar 

  179. 179

    Sengupta, A., Ghosh, R. K. & Mahapatra, S. Performance analysis of strained monolayer MoS2 MOSFET. IEEE Trans. Electron. Devices 60, 2782–2787 (2013).

    CAS  Article  Google Scholar 

  180. 180

    Mohammad Tabatabaei, S., Noei, M., Khaliji, K., Pourfath, M. & Fathipour, M. A first-principles study on the effect of biaxial strain on the ultimate performance of monolayer MoS2-based double gate field effect transistor. J. Appl. Phys. 113, 163708 (2013).

    Article  CAS  Google Scholar 

  181. 181

    Feng, J., Qian, X., Huang, C.-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866–872 (2012).

    CAS  Article  Google Scholar 

  182. 182

    Kumar, H., Er, D., Dong, L., Li, J. & Shenoy, V. B. Elastic deformations in 2D van der waals heterostructures and their impact on optoelectronic properties: predictions from a multiscale computational approach. Sci. Rep. 5, 10872 (2015).

    CAS  Article  Google Scholar 

  183. 183

    Sharma, M., Kumar, A., Ahluwalia, P. K. & Pandey, R. Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides. J. Appl. Phys. 116, 063711 (2014).

    Article  CAS  Google Scholar 

  184. 184

    Yu, S. et al. Strain-engineering the anisotropic electrical conductance in ReS2 monolayer. Appl. Phys. Lett. 108, 191901 (2016).

    Article  CAS  Google Scholar 

  185. 185

    Manzeli, S., Allain, A., Ghadimi, A. & Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2 . Nano Lett. 15, 5330–5335 (2015).

    CAS  Article  Google Scholar 

  186. 186

    Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotechnol. 10, 151–155 (2015).

    CAS  Article  Google Scholar 

  187. 187

    Lloyd, D. et al. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2 . Nano Lett. 16, 5836–5841 (2016).

    CAS  Article  Google Scholar 

  188. 188

    Li, H. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

    CAS  Article  Google Scholar 

  189. 189

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013).

    CAS  Article  Google Scholar 

  190. 190

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013).

    CAS  Article  Google Scholar 

  191. 191

    Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 . Phys. Rev. B 88, 121301 (2013).

    Article  CAS  Google Scholar 

  192. 192

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013).

    CAS  Article  Google Scholar 

  193. 193

    Plechinger, G. et al. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2, 015006 (2015).

    Article  CAS  Google Scholar 

  194. 194

    Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).

    CAS  Article  Google Scholar 

  195. 195

    Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

    Article  Google Scholar 

  196. 196

    Rice, C. et al. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 . Phys. Rev. B 87, 081307 (2013).

    Article  CAS  Google Scholar 

  197. 197

    Desai, S. B. et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2 . Nano Lett. 14, 4592–4597 (2014).

    CAS  Article  Google Scholar 

  198. 198

    Island, J. O. et al. Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 8, 2589–2593 (2016).

    CAS  Article  Google Scholar 

  199. 199

    Duerloo, K.-A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

    CAS  Article  Google Scholar 

  200. 200

    Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab-initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).

    CAS  Article  Google Scholar 

  201. 201

    Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    CAS  Article  Google Scholar 

  202. 202

    Kanda, Y. Piezoresistance effect of silicon. Sens. Actuators Phys. 28, 83–91 (1991).

    CAS  Article  Google Scholar 

  203. 203

    Smith, A. D. et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 13, 3237–3242 (2013).

    CAS  Article  Google Scholar 

  204. 204

    Huang, M., Pascal, T. A., Kim, H., Goddard, W. A. & Greer, J. R. Electronic—mechanical coupling in graphene from in situ nanoindentation experiments and multiscale atomistic simulations. Nano Lett. 11, 1241–1246 (2011).

    CAS  Article  Google Scholar 

  205. 205

    Petersen, K. E. Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982).

    CAS  Article  Google Scholar 

  206. 206

    Solomon, P. M. et al. Pathway to the piezoelectronic transduction logic device. Nano Lett. 15, 2391–2395 (2015).

    CAS  Article  Google Scholar 

  207. 207

    Newns, D., Elmegreen, B., Liu, X. H. & Martyna, G. A low-voltage high-speed electronic switch based on piezoelectric transduction. J. Appl. Phys. 111, 084509 (2012).

    Article  CAS  Google Scholar 

  208. 208

    Wu, W. et al. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 28, 8463–8468 (2016).

    CAS  Article  Google Scholar 

  209. 209

    Pu, J. et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012).

    CAS  Article  Google Scholar 

  210. 210

    Chang, H.-Y. et al. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013).

    CAS  Article  Google Scholar 

  211. 211

    Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    CAS  Article  Google Scholar 

  212. 212

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    CAS  Article  Google Scholar 

  213. 213

    Yoon, J. et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295–3300 (2013).

    CAS  Google Scholar 

  214. 214

    Pu, J. et al. Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Appl. Phys. Lett. 103, 023505 (2013).

    Article  CAS  Google Scholar 

  215. 215

    Shen, T., Penumatcha, A. V. & Appenzeller, J. Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano 10, 4712–4718 (2016).

    CAS  Article  Google Scholar 

  216. 216

    Tsai, M.-Y. et al. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces 7, 12850–12855 (2015).

    CAS  Article  Google Scholar 

  217. 217

    Pu, J. et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28, 4111–4119 (2016).

    CAS  Article  Google Scholar 

  218. 218

    Feng, J. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015).

    CAS  Article  Google Scholar 

  219. 219

    Feng, J. et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Lett. 15, 3431–3438 (2015).

    CAS  Article  Google Scholar 

  220. 220

    Schmidt, H. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 14, 1909–1913 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Research Council (Grant Nos. 682332 and 306504), Swiss National Science Foundation (Grant No. 153298), funding from the Single Nanometre Manufacturing project under the European Union's Seventh Framework Programme FP7/2007-2013 (Grant Agreement No. 318804), Marie Curie ITN network ‘MoWSeS’ (Grant No. 317451). We acknowledge funding by the European Commission under the Graphene Flagship (Grant Agreement No. 604391).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andras Kis.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manzeli, S., Ovchinnikov, D., Pasquier, D. et al. 2D transition metal dichalcogenides. Nat Rev Mater 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing