Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interplay between materials and microfluidics

An Erratum to this article was published on 03 May 2017

Abstract

Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties — in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical timeline of developments in materials and microfluidics.
Figure 2: Elastomer-based stretchable microfluidics.
Figure 3: Representative materials for microfluidic devices.
Figure 4: Fabrication of micro- and nanoparticles in microfluidic systems.
Figure 5: Crystallization in microfluidic systems.
Figure 6: Microfluidics-enabled 3D bioprinting.

Similar content being viewed by others

References

  1. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006). A comprehensive review of the background, applications and future perspectives of microfluidics.

    Article  CAS  Google Scholar 

  2. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

    Article  CAS  Google Scholar 

  3. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  Google Scholar 

  4. Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    Article  CAS  Google Scholar 

  5. Hughes, A. J. & Herr, A. E. Microfluidic western blotting. Proc. Natl Acad. Sci. USA 109, 21450–21455 (2012).

    Article  CAS  Google Scholar 

  6. Ozkumur, E. et al. Inertial focusing for tumor antigen–dependent and–independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5, 179ra47 (2013).

    Article  CAS  Google Scholar 

  7. Karabacak, N. M. et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9, 694–710 (2014).

    Article  CAS  Google Scholar 

  8. Warren, A. D., Kwong, G. A., Wood, D. K., Lin, K. Y. & Bhatia, S. N. Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl Acad. Sci. USA 111, 3671–3676 (2014).

    Article  CAS  Google Scholar 

  9. Tian, W.-C. & Fineout, E. (eds) Microfluidics for Biological Applications (Springer, 2008).

    Google Scholar 

  10. Ren, K. N., Zhou, J. H. & Wu, H. K. Materials for microfluidic chip fabrication. Acc. Chem. Res. 46, 2396–2406 (2013).

    Article  CAS  Google Scholar 

  11. Shepherd, R. F. et al. Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 22, 8618–8622 (2006).

    Article  CAS  Google Scholar 

  12. Kim, J. W., Utada, A. S., Fernández-Nieves, A., Hu, Z. & Weitz, D. A. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew. Chem. Int. Ed. 119, 1851–1854 (2007).

    Article  Google Scholar 

  13. Chu, L. Y., Utada, A. S., Shah, R. K., Kim, J. W. & Weitz, D. A. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed. 46, 8970–8974 (2007).

    Article  CAS  Google Scholar 

  14. Shah, R. K. et al. Designer emulsions using microfluidics. Mater. Today 11, 18–27 (2008).

    Article  CAS  Google Scholar 

  15. Kotz, F. et al. Liquid glass: a facile soft replication method for structuring glass. Adv. Mater. 28, 1521–4095 (2016).

    Article  CAS  Google Scholar 

  16. Ren, K. N., Chen, Y. & Wu, H. K. New materials for microfluidics in biology. Curr. Opin. Biotechnol. 25, 78–85 (2014).

    Article  CAS  Google Scholar 

  17. Nge, P. N., Rogers, C. I. & Woolley, A. T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 113, 2550–2583 (2013).

    Article  CAS  Google Scholar 

  18. Xia, Y. N. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    Article  CAS  Google Scholar 

  19. Xia, Y. N. et al. Complex optical surfaces formed by replica molding against elastomeric masters. Science 273, 347–349 (1996).

    Article  CAS  Google Scholar 

  20. Kim, E., Xia, Y. N. & Whitesides, G. M. Polymer microstructures formed by molding in capillaries. Nature 376, 581–584 (1995).

    Article  CAS  Google Scholar 

  21. McDonald, J. C. & Whitesides, G. M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002).

    Article  CAS  Google Scholar 

  22. McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    Article  CAS  Google Scholar 

  23. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  CAS  Google Scholar 

  24. Kubo, M. et al. Stretchable microfluidic radiofrequency antennas. Adv. Mater. 22, 2749–2752 (2010).

    Article  CAS  Google Scholar 

  25. Cheng, S. & Wu, Z. G. Microfluidic stretchable RF electronics. Lab Chip 10, 3227–3234 (2010).

    Article  CAS  Google Scholar 

  26. Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014). A seminal paper that reports the development of soft microfluidics and applications in flexible sensors.

    Article  CAS  Google Scholar 

  27. Sollier, E., Murray, C., Maoddi, P. & Di Carlo, D. Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11, 3752–3765 (2011).

    Article  CAS  Google Scholar 

  28. Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484–1486 (2006).

    Article  CAS  Google Scholar 

  29. Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

    Article  CAS  Google Scholar 

  30. Lim, H. & Moon, S. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth. Biomed. Microdevices 17, 70–77 (2015).

    Article  CAS  Google Scholar 

  31. Kim, B. Y., Hong, L. Y., Chung, Y. M., Kim, D. P. & Lee, C. S. Solvent-resistant PDMS microfluidic devices with hybrid inorganic/organic polymer coatings. Adv. Funct. Mater. 19, 3796–3803 (2009).

    Article  CAS  Google Scholar 

  32. Kim, B. Y., Hong, L. Y., Kim, D. P. & Lee, C. S. in Proc. 1st Shenyang Int. Colloquium Microfluidics 111–114 (Northeast Univ. Press, 2007).

    Google Scholar 

  33. Kim, M., Huang, Y., Choi, K. & Hidrovo, C. H. The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices. Microelectron. Eng. 124, 66–75 (2014).

    Article  CAS  Google Scholar 

  34. Shim, J. U. et al. Control and measurement of the phase behavior of aqueous solutions using microfluidics. J. Am. Chem. Soc. 129, 8825–8835 (2007).

    Article  CAS  Google Scholar 

  35. Noorduin, W. L., Grinthal, A., Mahadevan, L. & Aizenberg, J. Rationally designed complex, hierarchical microarchitectures. Science 340, 832–837 (2013).

    Article  CAS  Google Scholar 

  36. Kloxin, C. J. & Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42, 7161–7173 (2013).

    Article  CAS  Google Scholar 

  37. Metz, S., Jiguet, S., Bertsch, A. & Renaud, P. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip 4, 114–120 (2004).

    Article  CAS  Google Scholar 

  38. Zulfiqar, A., Pfreundt, A., Svendsen, W. E. & Dimaki, M. Fabrication of polyimide based microfluidic channels for biosensor devices. J. Micromech. Microeng. 25, 035022 (2015).

    Article  CAS  Google Scholar 

  39. Metz, S., Holzer, R. & Renaud, P. Polyimide-based microfluidic devices. Lab Chip 1, 29–34 (2001).

    Article  CAS  Google Scholar 

  40. Ayuso, J. M. et al. SU-8 based microfluidic device for oxygen/nutrients gradient three dimensional cell culture (Poster). Mol. Biol. Cell 24 (2013).

  41. Sato, H., Matsumura, H., Keino, S. & Shoji, S. An all SU-8 microfluidic chip with built-in 3D fine microstructures. J. Micromech. Microeng. 16, 2318–2322 (2006).

    Article  Google Scholar 

  42. Schmidt, M.-P. et al. Flexible free-standing SU-8 microfluidic impedance spectroscopy sensor for 3D molded interconnect devices application. J. Sens. Sens. Syst. 5, 55–61 (2016).

    Article  Google Scholar 

  43. Martin, P. M., Matson, D. W., Bennett, W. D. & Hammerstrom, D. J. Fabrication of plastic microfluidic components. Proc. SPIE 3515, 172–176 (1998).

    Article  Google Scholar 

  44. Man, P. F., Jones, D. K. & Mastrangelo, C. H. Microfluidic plastic capillaries on silicon substrates: a new inexpensive technology for bioanalysis chips. Proc. IEEE Micro Electro Mech. Syst. 311–316 (1997).

  45. Barker, S. L. R. et al. Fabrication, derivatization and applications of plastic microfluidic devices. Proc. SPIE 4205, 112–118 (2001).

    Article  CAS  Google Scholar 

  46. Boone, T. et al. Plastic advances microfluidic devices. Anal. Chem. 74, 78a–86a (2002).

    Article  CAS  Google Scholar 

  47. Ren, K. N., Dai, W., Zhou, J. H., Su, J. & Wu, H. K. Whole-Teflon microfluidic chips. Proc. Natl Acad. Sci. USA 108, 8162–8166 (2011). The first report on methods that can be used to fabricate microfluidic devices made entirely of thermoplastic materials.

    Article  CAS  Google Scholar 

  48. Birarda, G. et al. IR-live: fabrication of a low-cost plastic microfluidic device for infrared spectromicroscopy of living cells. Lab Chip 16, 1644–1651 (2016).

    Article  CAS  Google Scholar 

  49. Lee, K. S. & Ram, R. J. Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics. Lab Chip 9, 1618–1624 (2009).

    Article  CAS  Google Scholar 

  50. Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable ‘liquid Teflon’ for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).

    Article  CAS  Google Scholar 

  51. Chen, X., Li, T. & Shen, J. CO2 laser ablation of microchannel on PMMA substrate for effective fabrication of microfluidic chips. Int. Polym. Process. 31, 233–238 (2016).

    Article  CAS  Google Scholar 

  52. Howell, C. et al. Stability of surface-immobilized lubricant interfaces under flow. Chem. Mater. 27, 1792–1800 (2015).

    Article  CAS  Google Scholar 

  53. Au, A. K., Huynh, W., Horowitz, L. F. & Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016). A critical review on the adoption of the 3D printing strategy for the fabrication of microfluidic devices.

    Article  CAS  Google Scholar 

  54. Ho, C. M. B., Ng, S. H., Li, K. H. H. & Yoon, Y. J. 3D printed microfluidics for biological applications. Lab Chip 15, 3627–3637 (2015).

    Article  CAS  Google Scholar 

  55. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    Article  CAS  Google Scholar 

  56. Khademhosseini, A. & Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials 28, 5087–5092 (2007).

    Article  CAS  Google Scholar 

  57. Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).

    Article  CAS  Google Scholar 

  58. Yue, K. et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015).

    Article  CAS  Google Scholar 

  59. Loessner, D. et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat. Protoc. 11, 727–746 (2016).

    Article  CAS  Google Scholar 

  60. Zhao, S. W. et al. Bio-functionalized silk hydrogel microfluidic systems. Biomaterials 93, 60–70 (2016). Report on the development of silk hydrogel-based microfluidic systems.

    Article  CAS  Google Scholar 

  61. Kharaziha, M. et al. Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35, 7346–7354 (2014).

    Article  CAS  Google Scholar 

  62. Zhang, Y.-N. et al. A highly elastic and rapidly crosslinkable elastin-like polypeptide-based hydrogel for biomedical applications. Adv. Funct. Mater. 25, 4814–4826 (2015).

    Article  CAS  Google Scholar 

  63. Yao, X. et al. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification. Adv. Mater. 28, 7383–7389 (2016).

    Article  CAS  Google Scholar 

  64. Oliveira, N. M. et al. Hydrophobic hydrogels: towards construction of floating (bio)microdevices. Chem. Mater. 28, 3641–3648 (2016).

    Article  CAS  Google Scholar 

  65. Glavan, A. C. et al. Omniphobic “RF paper” produced by silanization of paper with fluoroalkyltrichlorosilanes. Adv. Funct. Mater. 24, 60–70 (2014).

    Article  CAS  Google Scholar 

  66. Songjaroen, T., Dungchai, W., Chailapakul, O., Henry, C. S. & Laiwattanapaisal, W. Blood separation on microfluidic paper-based analytical devices. Lab Chip 12, 3392–3398 (2012).

    Article  CAS  Google Scholar 

  67. Martinez, A. W., Phillips, S. T. & Whitesides, G. M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl Acad. Sci. USA 105, 19606–19611 (2008). One of the first demonstrations of disposable paper-based microfluidic devices.

    Article  CAS  Google Scholar 

  68. Glavan, A. C. et al. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab Chip 13, 2922–2930 (2013).

    Article  CAS  Google Scholar 

  69. Chitnis, G., Ding, Z. W., Chang, C. L., Savran, C. A. & Ziaie, B. Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11, 1161–1165 (2011).

    Article  CAS  Google Scholar 

  70. Choi, S., Kim, S. K., Lee, G. J. & Park, H. K. Paper-based 3D microfluidic device for multiple bioassays. Sens. Actuators B 219, 245–250 (2015).

    Article  CAS  Google Scholar 

  71. Singh, A., Scotti, G., Sikanen, T., Jokinen, V. & Franssila, S. Laser direct writing of thick hybrid polymers for microfluidic chips. Micromachines 5, 472–485 (2014).

    Article  Google Scholar 

  72. Aura, S., Sikanen, T., Kotiaho, T. & Franssila, S. Novel hybrid material for microfluidic devices. Sens. Actuators B 132, 397–403 (2008).

    Article  CAS  Google Scholar 

  73. Shameli, S. M., Glawdel, T., Liu, Z. & Ren, C. L. Bilinear temperature gradient focusing in a hybrid PDMS/glass microfluidic chip integrated with planar heaters for generating temperature gradients. Anal. Chem. 84, 2968–2973 (2012).

    Article  CAS  Google Scholar 

  74. Moraes, F. C. et al. Glass/PDMS hybrid microfluidic device integrating vertically aligned SWCNTs to ultrasensitive electrochemical determinations. Lab Chip 12, 1959–1962 (2012).

    Article  CAS  Google Scholar 

  75. Crabtree, H. J. et al. Inhibition of on-chip PCR using PDMS–glass hybrid microfluidic chips. Microfluid. Nanofluid. 13, 383–398 (2012).

    Article  CAS  Google Scholar 

  76. Li, O. A. et al. A glass/PDMS hybrid microfluidic chip embedded with integrated electrodes for contactless conductivity detection. Chromatographia 68, 1039–1044 (2008).

    Article  CAS  Google Scholar 

  77. Matsui, T., Franzke, J., Manz, A. & Janasek, D. Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip. Electrophoresis 28, 4606–4611 (2007).

    Article  CAS  Google Scholar 

  78. Guo, H. L., Zhao, P., Xiao, G. Z., Zhang, Z. Y. & Yao, J. P. Optical manipulation of microparticles in an SU-8/PDMS hybrid microfluidic chip incorporating a monolithically integrated on-chip lens set. IEEE J. Select. Top. Quantum Electron. 16, 919–926 (2010).

    Article  CAS  Google Scholar 

  79. Wu, M. H. et al. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate. Biomed. Microdevices 7, 323–329 (2005).

    Article  CAS  Google Scholar 

  80. Kuo, T. C., Cannon, D. M., Shannon, M. A., Bohn, P. W. & Sweedler, J. V. Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens. Actuators A 102, 223–233 (2003).

    Article  CAS  Google Scholar 

  81. Chang, C. W. et al. A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab Chip 14, 3762–3772 (2014).

    Article  CAS  Google Scholar 

  82. Suzuki, Y., Yamada, M. & Seki, M. Sol-gel based fabrication of hybrid microfluidic devices composed of PDMS and thermoplastic substrates. Sens. Actuators B 148, 323–329 (2010).

    Article  CAS  Google Scholar 

  83. Leung, J. C. K., Hilliker, A. J. & Rezai, P. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster. Lab Chip 16, 709–719 (2016).

    Article  CAS  Google Scholar 

  84. Wong, I. et al. An agar gel membrane–PDMS hybrid microfluidic device for long term single cell dynamic study. Lab Chip 10, 2710–2719 (2010).

    Article  CAS  Google Scholar 

  85. Dou, M. W., Dominguez, D. C., Li, X. J., Sanchez, J. & Scott, G. A. Versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis. Anal. Chem. 86, 7978–7986 (2014).

    Article  CAS  Google Scholar 

  86. Hesari, Z. et al. A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells. J. Biomed. Mater. Res. A 104, 1534–1543 (2016).

    Article  CAS  Google Scholar 

  87. Chartier, I. et al. Fabrication of a hybrid plastic–silicon microfluidic device for high-throughput genotyping. Proc. SPIE 4982, 208–219 (2003).

    Article  Google Scholar 

  88. Kim, H. et al. Submillisecond organic synthesis: outpacing Fries rearrangement through microfluidic rapid mixing. Science 352, 691–694 (2016).

    Article  CAS  Google Scholar 

  89. Ou, J. J., Glawdel, T., Ren, C. L. & Pawliszyn, J. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins. Lab Chip 9, 1926–1932 (2009).

    Article  CAS  Google Scholar 

  90. Zuo, P., Li, X. J., Dominguez, D. C. & Ye, B.-C. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 13, 3921–3928 (2013).

    Article  CAS  Google Scholar 

  91. Santaniello, T. et al. A room-temperature bonding technique for the packaging of hydrogel-based hybrid microfluidic devices. Microfluid. Nanofluid. 19, 31–41 (2015).

    Article  CAS  Google Scholar 

  92. Zhang, X., Lu, H., Qian, M. & Zeng, X. Fabrication of microfluidic devices using photopatternable hybrid sol-gel coatings. J. Sol-Gel Sci. Technol. 48, 143–147 (2008).

    Article  CAS  Google Scholar 

  93. Connatser, R. M., Riddle, L. A. & Sepaniak, M. J. Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection. J. Sep. Sci. 27, 1545–1550 (2004).

    Article  CAS  Google Scholar 

  94. Annabi, N. et al. Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 13, 3569–3577 (2013).

    Article  CAS  Google Scholar 

  95. Hou, X., Hu, Y. H., Grinthal, A., Khan, M. & Aizenberg, J. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 519, 70–73 (2015). Microfluidic gating mechanism for separating liquids with tunable multiphase selectivity.

    Article  CAS  Google Scholar 

  96. Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4, 316–321 (2004).

    Article  CAS  Google Scholar 

  97. Xu, S. et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. 44, 724–728 (2005).

    Article  CAS  Google Scholar 

  98. Li, W., Dong, H., Tang, G., Ma, T. & Cao, X. Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications. RSC Adv. 5, 23181–23188 (2015).

    Article  CAS  Google Scholar 

  99. Kim, B., Lee, H. S., Kim, J. & Kim, S.-H. Microfluidic fabrication of photo-responsive hydrogel capsules. Chem. Commun. 49, 1865–1867 (2013).

    Article  CAS  Google Scholar 

  100. Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. & Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater. 5, 365–369 (2006).

    Article  CAS  Google Scholar 

  101. Lee, S. W., Choi, J. S., Cho, K. Y. & Yim, J.-H. Facile fabrication of uniform-sized, magnetic, and electroconductive hybrid microspheres using a microfluidic droplet generator. Eur. Polymer J. 80, 40–47 (2016).

    Article  CAS  Google Scholar 

  102. Hwang, D. K., Dendukuri, D. & Doyle, P. S. Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8, 1640–1647 (2008).

    Article  CAS  Google Scholar 

  103. Wang, J. et al. Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Appl. Mater. Interfaces 7, 27035–27039 (2015).

    Article  CAS  Google Scholar 

  104. Velasco, D., Tumarkin, E. & Kumacheva, E. Microfluidic encapsulation of cells in polymer microgels. Small 8, 1633–1642 (2012).

    Article  CAS  Google Scholar 

  105. Zhao, X. et al. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 26, 2809–2819 (2016).

    Article  CAS  Google Scholar 

  106. Faustini, M. et al. Microfluidic approach toward continuous and ultrafast synthesis of metal–organic framework crystals and hetero structures in confined microdroplets. J. Am. Chem. Soc. 135, 14619–14626 (2013). Microfluidic synthesis of metal–organic framework crystals in a continuous manner.

    Article  CAS  Google Scholar 

  107. Priest, C. et al. Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip 8, 2182–2187 (2008).

    Article  CAS  Google Scholar 

  108. Kim, B., Soo Lee, H., Kim, J. & Kim, S. H. Microfluidic fabrication of photo-responsive hydrogel capsules. Chem. Commun. 49, 1865–1867 (2013).

    Article  CAS  Google Scholar 

  109. Amstad, E., Kim, S. H. & Weitz, D. A. Photo-and thermoresponsive polymersomes for triggered release. Angew. Chem. Int. Ed. 124, 12667–12671 (2012).

    Article  Google Scholar 

  110. Dendukuri, D. & Doyle, P. S. The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater. 21, 4071–4086 (2009).

    Article  CAS  Google Scholar 

  111. Dendukuri, D., Gu, S. S., Pregibon, D. C., Hatton, T. A. & Doyle, P. S. Stop-flow lithography in a microfluidic device. Lab Chip 7, 818–828 (2007).

    Article  CAS  Google Scholar 

  112. Panda, P. et al. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8, 1056–1061 (2008).

    Article  CAS  Google Scholar 

  113. Suh, S. K., Bong, K. W., Hatton, T. A. & Doyle, P. S. Using stop-flow lithography to produce opaque microparticles: synthesis and modeling. Langmuir 27, 13813–13819 (2011).

    Article  CAS  Google Scholar 

  114. Hwang, D. K. et al. Stop-flow lithography for the production of shape-evolving degradable microgel particles. J. Am. Chem. Soc. 131, 4499–4504 (2009).

    Article  CAS  Google Scholar 

  115. Le Goff, G. C., Lee, J., Gupta, A., Hill, W. A. & Doyle, P. S. High-throughput contact flow lithography. Adv. Sci. 2, 1500149 (2015). Extension of contact flow lithography to high-throughput lithography.

    Article  CAS  Google Scholar 

  116. Kim, J. J., Bong, K. W., Reategui, E., Irimia, D. & Doyle, P. S. Porous microwells for geometry-selective, large-scale microparticle arrays. Nat. Mater. 16, 139–146 (2017).

    Article  CAS  Google Scholar 

  117. Amstad, E. et al. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator. Science 349, 956–960 (2015). The fabrication of nanoparticles using a microfluidic nebulator featuring a multistage supersonic spray-drying process.

    Article  CAS  Google Scholar 

  118. Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    Article  CAS  Google Scholar 

  119. Choi, C. H. et al. One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell. Lab Chip 16, 1549–1555 (2016).

    Article  CAS  Google Scholar 

  120. Allazetta, S., Kolb, L., Zerbib, S., Bardy, J. & Lutolf, M. P. Cell-instructive microgels with tailor-made physicochemical properties. Small 11, 5647–5656 (2015).

    Article  CAS  Google Scholar 

  121. Lignos, I. et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett. 16, 1869–1877 (2016).

    Article  CAS  Google Scholar 

  122. Hung, L.-H. & Lee, A. P. Microfluidic devices for the synthesis of nanoparticles and biomaterials. J. Med. Biol. Eng. 27, 1–6 (2007).

    Google Scholar 

  123. Yashina, A., Lignos, I., Stavrakis, S., Choo, J. & deMello, A. J. Scalable production of CuInS2/ZnS quantum dots in a two-step droplet-based microfluidic platform. J. Mater. Chem. C 4, 6401–6408 (2016).

    Article  CAS  Google Scholar 

  124. Hafermann, L. & Köhler, J. M. Photochemical micro continuous-flow synthesis of noble metal nanoparticles of the platinum group. Chem. Eng. Technol. 38, 1138–1143 (2015).

    Article  CAS  Google Scholar 

  125. Zhang, L., Wang, Y., Tong, L. & Xia, Y. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption. Nano Lett. 14, 4189–4194 (2014).

    Article  CAS  Google Scholar 

  126. Watt, J., Hance, B. G., Anderson, R. S. & Huber, D. L. Effect of seed age on gold nanorod formation: a microfluidic, real-time investigation. Chem. Mater. 27, 6442–6449 (2015).

    Article  CAS  Google Scholar 

  127. Kim, J., Li, Z. & Park, I. Direct synthesis and integration of functional nanostructures in microfluidic devices. Lab Chip 11, 1946–1951 (2011).

    Article  CAS  Google Scholar 

  128. Boleininger, J., Kurz, A., Reuss, V. & Sonnichsen, C. Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals. Phys. Chem. Chem. Phys. 8, 3824–3827 (2006).

    Article  CAS  Google Scholar 

  129. Lane, S. W., Williams, D. A. & Watt, F. M. Modulating the stem cell niche for tissue regeneration. Nat. Biotechnol. 32, 795–803 (2014).

    Article  CAS  Google Scholar 

  130. Wagers, A. J. The stem cell niche in regenerative medicine. Cell Stem Cell 10, 362–369 (2012).

    Article  CAS  Google Scholar 

  131. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015). Microfluidic production of droplets that encapsulate single cells with uniquely barcoded primers for transcriptome analysis.

    Article  CAS  Google Scholar 

  132. Chan, E. M., Mathies, R. A. & Alivisatos, A. P. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett. 3, 199–201 (2003).

    Article  CAS  Google Scholar 

  133. Hansen, C. L., Skordalakes, E., Berger, J. M. & Quake, S. R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl Acad. Sci. USA 99, 16531–16536 (2002).

    Article  CAS  Google Scholar 

  134. Hansen, C. L., Classen, S., Berger, J. M. & Quake, S. R. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J. Am. Chem. Soc. 128, 3142–3143 (2006).

    Article  CAS  Google Scholar 

  135. Hansen, C. L., Sommer, M. O. & Quake, S. R. Systematic investigation of protein phase behavior with a microfluidic formulator. Proc. Natl Acad. Sci. USA 101, 14431–14436 (2004).

    Article  CAS  Google Scholar 

  136. Zheng, B., Roach, L. S. & Ismagilov, R. F. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125, 11170–11171 (2003).

    Article  CAS  Google Scholar 

  137. Abdallah, B. G., Roy-Chowdhury, S., Fromme, R., Fromme, P. & Ros, A. Protein crystallization in an actuated microfluidic nanowell device. Cryst. Growth Des. 16, 2074–2082 (2016).

    Article  CAS  Google Scholar 

  138. Goyal, S. et al. Solvent compatible microfluidic platforms for pharmaceutical solid form screening. RSC Adv. 6, 13286–13296 (2016).

    Article  CAS  Google Scholar 

  139. Sui, S. et al. Graphene-based microfluidics for serial crystallography. Lab Chip 16, 3082–3096 (2016).

    Article  CAS  Google Scholar 

  140. Chae, S. K., Kang, E., Khademhosseini, A. & Lee, S. H. Micro/nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm. Adv. Mater. 25, 3071–3078 (2013).

    Article  CAS  Google Scholar 

  141. Wang, G. et al. Microfluidic crystal engineering of π-conjugated polymers. ACS Nano 9, 8220–8230 (2015).

    Article  CAS  Google Scholar 

  142. Shi, X. et al. Microfluidic spinning of cell-responsive grooved microfibers. Adv. Funct. Mater. 25, 2250–2259 (2015).

    Article  CAS  Google Scholar 

  143. Nunes, J. K. et al. Fabricating shaped microfibers with inertial microfluidics. Adv. Mater. 26, 3712–3717 (2014).

    Article  CAS  Google Scholar 

  144. Onoe, H. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584–590 (2013).

    Article  CAS  Google Scholar 

  145. Kang, E. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10, 877–883 (2011). Microfluidic fabrication of digitally coded multimaterial microfibres.

    Article  CAS  Google Scholar 

  146. Cacho-Bailo, F. et al. Metal–organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis. J. Membr. Sci. 476, 277–285 (2015).

    Article  CAS  Google Scholar 

  147. Cheng, Y. et al. Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl. Mater. Interfaces 8, 1080–1086 (2016).

    Article  CAS  Google Scholar 

  148. Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330 (1986).

  149. Sheth, R. et al. Three-dimensional printing: an enabling technology for IR. J. Vasc. Interv. Radiol. 27, 859–865 (2016).

    Article  Google Scholar 

  150. Minemawari, H. et al. Inkjet printing of single-crystal films. Nature 475, 364–367 (2011).

    Article  CAS  Google Scholar 

  151. Chou, D.-T. et al. Novel processing of iron–manganese alloy-based biomaterials by inkjet 3D printing. Acta Biomater. 9, 8593–8603 (2013).

    Article  CAS  Google Scholar 

  152. Agarwala, M., Bourell, D., Beaman, J., Marcus, H. & Barlow, J. Direct selective laser sintering of metals. Rapid Prototyp. J. 1, 26–36 (1995).

    Article  Google Scholar 

  153. Zein, I., Hutmacher, D. W., Tan, K. C. & Teoh, S. H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002).

    Article  CAS  Google Scholar 

  154. Fardel, R., Nagel, M., Nüesch, F., Lippert, T. & Wokaun, A. Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer. Appl. Phys. Lett. 91, 061103 (2007).

    Article  CAS  Google Scholar 

  155. Malda, J. et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).

    Article  CAS  Google Scholar 

  156. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    Article  CAS  Google Scholar 

  157. Zhang, Y. S. et al. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45, 148–163 (2017). [Au:OK?]

    Article  Google Scholar 

  158. Zhang, Y. S. et al. Bioprinting the cancer microenvironment. ACS Biomater. 2, 1710–1721 (2016).

    Article  CAS  Google Scholar 

  159. Bertassoni, L. E. et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14, 2202–2211 (2014).

    Article  CAS  Google Scholar 

  160. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  Google Scholar 

  161. Lee, V. K. et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35, 8092–8102 (2014).

    Article  CAS  Google Scholar 

  162. Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    Article  CAS  Google Scholar 

  163. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    Article  CAS  Google Scholar 

  164. Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015).

    Article  CAS  Google Scholar 

  165. Shin, S. R. et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 28, 3280–3289 (2016).

    Article  CAS  Google Scholar 

  166. Xavier, J. R. et al. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9, 3109–3118 (2015).

    Article  CAS  Google Scholar 

  167. Chang, R., Nam, J. & Sun, W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing. Tissue Eng. Part A 14, 41–48 (2008).

    Article  CAS  Google Scholar 

  168. Hardin, J. O., Ober, T. J., Valentine, A. D. & Lewis, J. A. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27, 3279–3284 (2015).

    Article  CAS  Google Scholar 

  169. Colosi, C. et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low viscosity bioink. Adv. Mater. 28, 677–684 (2016).

    Article  CAS  Google Scholar 

  170. Ober, T. J., Foresti, D. & Lewis, J. A. Active mixing of complex fluids at the microscale. Proc. Natl Acad. Sci. USA 112, 12293–12298 (2015). Design of a microfluidic printhead containing an embedded impeller that actively mixes multiple fluids for printing gradient structures.

    Article  CAS  Google Scholar 

  171. Barber, R. W. & Emerson, D. R. Optimal design of microfluidic networks using biologically inspired principles. Microfluid. Nanofluid. 4, 179–191 (2008).

    Article  Google Scholar 

  172. Domachuk, P., Tsioris, K., Omenetto, F. G. & Kaplan, D. L. Bio-microfluidics: biomaterials and biomimetic designs. Adv. Mater. 22, 249–260 (2010).

    Article  CAS  Google Scholar 

  173. Buchberger, G. et al. Bio-inspired microfluidic devices for passive, directional liquid transport: model-based adaption for different materials. Procedia Eng. 120, 106–111 (2015).

    Article  CAS  Google Scholar 

  174. Mukhopadhyay, R. When microfluidic devices go bad. Anal. Chem. 77, 429a–432a (2005).

    CAS  Google Scholar 

  175. Hou, X. (ed.) Design, Fabrication, Properties and Applications of Smart and Advanced Materials (CRC Press, 2016).

    Google Scholar 

  176. Hou, X. & Jiang, L. Learning from nature: building bio-inspired smart nanochannels. ACS Nano 3, 3339–3342 (2009).

    Article  CAS  Google Scholar 

  177. Liu, K. & Jiang, L. Multifunctional integration: from biological to bio-inspired materials. ACS Nano 5, 6786–6790 (2011).

    Article  CAS  Google Scholar 

  178. Liao, W.-S. et al. Small-molecule arrays for sorting G-protein-coupled receptors. J. Phys. Chem. C 117, 22362–22368 (2013).

    Article  CAS  Google Scholar 

  179. Tibbits, S. 4D printing: multi-material shape change. Archit. Design 84, 116–121 (2014).

    Article  Google Scholar 

  180. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  CAS  Google Scholar 

  181. Adamo, A. et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 352, 61–67 (2016).

    Article  CAS  Google Scholar 

  182. Garza-García, L. D. et al. Continuous flow micro-bioreactors for the production of biopharmaceuticals: the effect of geometry, surface texture, and flow rate. Lab Chip 14, 1320–1329 (2014).

    Article  Google Scholar 

  183. Timm, A. C., Shankles, P. G., Foster, C. M., Doktycz, M. J. & Retterer, S. T. Toward microfluidic reactors for cell-free protein synthesis at the point-of-care. Small 12, 810–817 (2016).

    Article  CAS  Google Scholar 

  184. Eringen, A. C. Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the US National Institutes of Health (AR057837, DE021468, D005865, AR068258, AR066193, EB022403, EB021148), the Air Force Office of Scientific Research Award (USA, FA9550-15-1-0273), the Presidential Early Career Award for Scientists and Engineers (USA), Consejo Nacional de Ciencia y Tecnología (Mexico, scholarships 262130 and 234713), Tecnológico de Monterrey (Mexico), Massachusetts Institute of Technology (MIT) International Science and Technology Initiatives and Fundación México en Harvard. This research has been partially funded by the Tecnológico de Monterrey and MIT Nanotechnology Program. X.H. acknowledges the support of the Recruitment Program for Young Professionals (China), the National Natural Science Foundation (China, 21673197), and the Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University (China), supported by the 111 Project (B16029). Y.S.Z. acknowledges the National Cancer Institute of the US National Institutes of Health Pathway to Independence Award (K99CA201603). J.R. acknowledges support from the Portuguese Foundation for Science and Technology (SFRH/BD/51679/2011). P.S.W., A.M.A. and J.A. acknowledge support from the Kavli Foundation (USA). A.M.A. acknowledges support from the Hatos Center for Neuropharmacology (USA). S.J.J. acknowledges the support of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at the University of California Los Angeles (UCLA) Training Program through its Clinical Fellowship Training Award Program, as well as the UCLA Children's Discovery and Innovation Institute's Fellows Research Support Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul S. Weiss, Anne M. Andrews, Joanna Aizenberg or Ali Khademhosseini.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Zhang, Y., Santiago, Gd. et al. Interplay between materials and microfluidics. Nat Rev Mater 2, 17016 (2017). https://doi.org/10.1038/natrevmats.2017.16

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2017.16

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research