Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemically diverse and multifunctional hybrid organic–inorganic perovskites

Abstract

Hybrid organic–inorganic perovskites (HOIPs) can have a diverse range of compositions including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. These materials have several common features, including their classical ABX3 perovskite architecture and the presence of organic amine cations that occupy the A-sites. Current research in HOIPs tends to focus on metal halide HOIPs, which show promise for use in solar cells and optoelectronic devices; however, the other subclasses also exhibit a diverse range of physical properties. In this Review, we summarize the chemical variability and structural diversity of all known HOIP subclasses. We also present a comprehensive account of their intriguing physical properties, including photovoltaic and optoelectronic properties, dielectricity, magnetism, ferroelectricity, ferroelasticity and multiferroicity. Moreover, we discuss the current challenges and future opportunities in this exciting field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The evolution of perovskites.
Figure 2: Hybrid organic–inorganic perovskites with double perovskite and antiperovskite structures.
Figure 3: Structural diversity of the A-site and X-site ions of hybrid organic–inorganic perovskites.
Figure 4: Semiconducting, lasing and light-emitting diode properties of solar-cell hybrid organic–inorganic perovskites.
Figure 5: The physical properties of formate hybrid organic–inorganic perovskites.
Figure 6: Phase transitions and associated properties of azide hybrid organic–inorganic perovskites (HOIPs).
Figure 7: Phase transitions and corresponding properties of diacyanamide and cyanide hybrid organic–inorganic perovskites.

References

  1. 1

    Rose, G. in De novis quibusdam fossilibus quae in montibus Uraliis inveniuntur 3–5 (AG Schade, 1839).

    Google Scholar 

  2. 2

    Wenk, H. & Bulakh, A. Minerals: Their Constitution and Origin (Cambridge Univ. Press, 2004).

    Google Scholar 

  3. 3

    Sasaki, S., Prewitt, C. & Bass, J. D. Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Crystallogr. C 43, 1668–1674 (1987).

    Google Scholar 

  4. 4

    Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015).

    CAS  Google Scholar 

  5. 5

    Wang, Z. et al. Anionic NaCl-type frameworks of [MnII(HCOO)3], templated by alkylammonium, exhibit weak ferromagnetism. Dalton Trans. 15, 2209–2216 (2004).

    Google Scholar 

  6. 6

    Cheetham, A. K. & Rao, C. N. Materials science: there’s room in the middle. Science 318, 58–59 (2007).

    CAS  Google Scholar 

  7. 7

    Weber, D. CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur. Z. Naturforsch. B 33, 1443–1445 (1978).

    Google Scholar 

  8. 8

    Zhang, W., Cai, Y., Xiong, R., Yoshikawa, H. & Awaga, K. Exceptional dielectric phase transitions in a perovskite-type cage compound. Angew. Chem. Int. Ed. 49, 6608–6610 (2010).

    CAS  Google Scholar 

  9. 9

    Mautner, F. A., Krischner, H. & Kratkv, C. Preparation and structure determination of tetraethylammonium calcium azide, [N(C2H5)4]Ca(N3)3 . Z. Kristallogr. 175, 105–110 (1986).

    CAS  Google Scholar 

  10. 10

    Schouwink, P. et al. Structure and properties of complex hydride perovskite materials. Nat. Commun. 5, 5706 (2014).

    CAS  Google Scholar 

  11. 11

    Maç zka, M. et al. Synthesis and order–disorder transition in a novel metal formate framework of [(CH3)2NH2][Na0.5Fe0.5(HCOO)3]. Dalton Trans. 43, 17075–170854 (2014).

    Google Scholar 

  12. 12

    Batail, P. et al. Antiperovskite structure with ternary tetrathiafulvalenium salts: construction, distortion, and antiferromagnetic ordering. Angew. Chem. Int. Ed. Engl. 30, 1498–1450 (1991).

    Google Scholar 

  13. 13

    Tong, M. et al. Cation-templated construction of three-dimensional α-Po cubic-type [M(dca)3]− networks. Syntheses, structures and magnetic properties of A[M(dca)3] (dca = dicyanamide; for A = benzyltributylammonium, M = Mn2+, Co2+; for A = benzyltriethylammonium, M = Mn2+, Fe2+). New J. Chem. 27, 779–782 (2003).

    CAS  Google Scholar 

  14. 14

    Du, Z. et al. Structural transition in the perovskite-like bimetallic azido coordination polymers: (NMe4)2[Bʹ∙Bʹʹ(N3)6] (Bʹ = Cr3+, Fe3+; Bʹʹ = Na+, K+). Cryst. Growth Des. 14, 3903–3909 (2014).

    CAS  Google Scholar 

  15. 15

    Zhang, W. et al. Tunable and switchable dielectric constant in an amphidynamic crystal. J. Am. Chem. Soc. 135, 5230–5233 (2013).

    CAS  Google Scholar 

  16. 16

    Xu, W.-J. et al. The cation-dependent structural phase transition and dielectric response in a family of cyanobridged perovskite-like coordination polymers. Dalton Trans. 45, 4224–4229 (2016).

    CAS  Google Scholar 

  17. 17

    Maç zka, M. et al. Synthesis and characterization of [(CH3)2NH2][Na0.5Cr0.5(HCOO)3]: a rare example of luminescent metal–organic frameworks based on Cr(III) ions. Dalton Trans. 44, 6871–6879 (2015).

    Google Scholar 

  18. 18

    Golschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 21, 477–485 (1926).

    Google Scholar 

  19. 19

    Kieslich, G., Sun, S. & Cheetham, A. K. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014).

    CAS  Google Scholar 

  20. 20

    Kieslich, G., Sun, S. & Cheetham, A. K. An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015).

    CAS  Google Scholar 

  21. 21

    Paton, L. A. & Harrison, W. T. A. Structural diversity in non-layered hybrid perovskites of the RMCl3 family. Angew. Chem. Int. Ed. 49, 7684–7687 (2010).

    CAS  Google Scholar 

  22. 22

    Duan, Z., Wang, Z. & Gao, S. Irreversible transformation of chiral to achiral polymorph of K[Co(HCOO)3]: synthesis, structures, and magnetic properties. Dalton Trans. 40, 4465–4473 (2011).

    CAS  Google Scholar 

  23. 23

    Antsyshkina, A. S., Poraikoshits, M. A. & Ostrikova, V. N. Stereochemistry of binary formats — crystalline structures of K4[Co(HCOO)6] and Cs[Co(HCOO)3]. Koord. Khim. 14, 1268–1272 (1988).

    CAS  Google Scholar 

  24. 24

    Gó mez-Aguirre, L. C. et al. Room-temperature polar order in [NH4][Cd(HCOO)3] — a hybrid inorganic–organic compound with a unique perovskite architecture. Inorg. Chem. 54, 2109–2116 (2015).

    Google Scholar 

  25. 25

    Shang, R., Chen, S., Wang, B., Wang, Z. & Gao, S. Temperature-induced irreversible phase transition from perovskite to diamond but pressure-driven back-transition in an ammonium copper formate. Angew. Chem. Int. Ed. 55, 2097–2100 (2016).

    CAS  Google Scholar 

  26. 26

    Wei, F. et al. The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium). Mater. Horiz. 3, 328–332 (2016).

    CAS  Google Scholar 

  27. 27

    Travis, W., Glover, E. N. K., Bronstein, H., Scanlon, D. O. & Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016).

    CAS  Google Scholar 

  28. 28

    Glazer, A. M. Simple ways of determining perovskite structures. Acta Crystallogr. A 31, 756–762 (1975).

    Google Scholar 

  29. 29

    Howard, C. J. & Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B 54, 782–789 (1998).

    Google Scholar 

  30. 30

    Stokes, H. T., Kisi, E. H., Hatch, D. M. & Howard, C. J. Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallogr. B 58, 934–938 (2002).

    Google Scholar 

  31. 31

    Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. A 28, 3384–3392 (1972).

    CAS  Google Scholar 

  32. 32

    Woodward, P. M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B 53, 32–43 (1997).

    Google Scholar 

  33. 33

    Woodward, P. M. Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr. B 53, 44–66 (1997).

    Google Scholar 

  34. 34

    Zhao, X. et al. Cation-dependent magnetic ordering and room-temperature bistability in azido-bridged perovskite-type compounds. J. Am. Chem. Soc. 135, 16006–16009 (2013).

    CAS  Google Scholar 

  35. 35

    Gómez-Aguirre, L. C. et al. Coexistence of three ferroic orders in the multiferroic compound [(CH3)4N][Mn(N3)3] with perovskite-like structure. Chem. Eur. J. 22, 1–9 (2016).

    Google Scholar 

  36. 36

    Li, W. et al. Ferroelasticity in a metal-organic framework perovskite; towards a new class of multiferroics. Acta Mater. 61, 4928–4938 (2013).

    CAS  Google Scholar 

  37. 37

    Ptak, M. et al. Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate. Dalton Trans. 45, 2574–2583 (2016).

    CAS  Google Scholar 

  38. 38

    Mats, J. & Peter, L. Handbook of Magnetism and Advanced Magnetic Materials (Wiley, 2007).

    Google Scholar 

  39. 39

    Jain, P., Dalal, N. S., Toby, B. H., Kroto, H. W. & Cheetham, A. K. Order–disorder antiferroelectric phase transition in a hybrid inorganic–organic framework with the perovskite architecture. J. Am. Chem. Soc. 130, 10450–10451 (2008).

    CAS  Google Scholar 

  40. 40

    Wang, W. et al. Magnetoelectric coupling in the paramagnetic state of a metal–organic framework. Sci. Rep. 3, 2024 (2013).

    CAS  Google Scholar 

  41. 41

    Sourisseau, S. et al. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic–inorganic interface. Chem. Mater. 19, 600–607 (2007).

    CAS  Google Scholar 

  42. 42

    Shang, R., Xu, G., Wang, Z. & Gao, S. Phase transitions, prominent dielectric anomalies, and negative thermal expansion in three high thermally stable ammonium magnesium-formate frameworks. Chem. Eur. J. 20, 1146–1158 (2014).

    CAS  Google Scholar 

  43. 43

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    CAS  Google Scholar 

  44. 44

    Li, W. et al. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture. J. Am. Chem. Soc. 136, 7801–7804 (2014).

    CAS  Google Scholar 

  45. 45

    Schlueter, J. A., Manson, J. L. & Geiser, U. Structural and magnetic diversity in tetraalkylammonium salts of anionic M[N(CN)2]3 (M = Mn and Ni) three-dimensional coordination polymers. Inorg. Chem. 44, 3194–3202 (2005).

    CAS  Google Scholar 

  46. 46

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Google Scholar 

  47. 47

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    CAS  Google Scholar 

  48. 48

    Jung, H. S. & Park, N. G. Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015).

    CAS  Google Scholar 

  49. 49

    Berry, J. et al. Hybrid organic–inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27, 5102–5112 (2015).

    CAS  Google Scholar 

  50. 50

    Gratzel, M. The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).

    CAS  Google Scholar 

  51. 51

    Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    CAS  Google Scholar 

  52. 52

    Topsoe, H. Oversigt. K. Danske Vidensk. Selsk. Forh. 8, 247 (1882).

    Google Scholar 

  53. 53

    Mitzi, D. B. Templating and structural engineering in organic-inorganic perovskites. Dalton Trans. 1–12 (2001).

  54. 54

    Mitzi, D. B., Feild, C. A., Schlesinger, Z. & Laibowitz, R. B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3 . J. Solid State Chem. 114, 159–163 (1995).

    CAS  Google Scholar 

  55. 55

    Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    CAS  Google Scholar 

  56. 56

    Mitzi, D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (1999).

    CAS  Google Scholar 

  57. 57

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  58. 58

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–646 (2012).

    CAS  Google Scholar 

  59. 59

    Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Google Scholar 

  60. 60

    Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    CAS  Google Scholar 

  61. 61

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    CAS  Google Scholar 

  62. 62

    Jenny, D. A., Loferski, J. J. & Rappaport, P. Photovoltaic effect in GaAs p–n junctions and solar energy conversion. Phys. Rev. 101, 1208–1209 (1956).

    CAS  Google Scholar 

  63. 63

    Baikie, T. et al. A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl). J. Mater. Chem. A 3, 9298–9307 (2015).

    CAS  Google Scholar 

  64. 64

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    CAS  Google Scholar 

  65. 65

    Lee, J. H., Bristowe, N. C., Bristowe, P. D. & Cheetham, A. K. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3 . Chem. Commun. 51, 6434–6437 (2015).

    CAS  Google Scholar 

  66. 66

    Ong, K. P., Goh, T. W., Xu, Q. & Huan, A. Mechanical origin of the structural phase transition in methylammonium lead iodide CH3NH3PbI3 . J. Phys. Chem. Lett. 6, 681–685 (2015).

    CAS  Google Scholar 

  67. 67

    Even, J., Pedesseau, L., Jancu, J. & Katan, C. DFT and k ·p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi (RRL) 8, 31–35 (2014).

    CAS  Google Scholar 

  68. 68

    Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    CAS  Google Scholar 

  69. 69

    Pern, F. J. & Glick, S. H. Photothermal stability of encapsulated Si solar cells and encapsulation materials upon accelerated exposures. Sol. Energy Mater. Sol. Cells 61, 153–188 (2000).

    CAS  Google Scholar 

  70. 70

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    CAS  Google Scholar 

  71. 71

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    CAS  Google Scholar 

  72. 72

    Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

    CAS  Google Scholar 

  73. 73

    Volonakis, G. et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7, 1254–1259 (2016).

    CAS  Google Scholar 

  74. 74

    Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016).

    CAS  Google Scholar 

  75. 75

    McClure, E. T., Ball, M. R., Windl, W. & Woodward, P. M. Cs2AgBiX6(X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016).

    CAS  Google Scholar 

  76. 76

    Deng, Z. et al. Exploring the properties of lead-free hybrid double perovskites using a combined computational–experimental approach. J. Mater. Chem. A 4, 12025–12029 (2016).

    CAS  Google Scholar 

  77. 77

    Abou-Ras, D., Kirchartz, T. & Rau, U. in Advanced Characterization Techniques for Thin Film Solar Cells (eds Kirchartz, T. & Rau, U. ) 3–32 (Wiley-VCH, 2011).

    Google Scholar 

  78. 78

    Gao, W. et al. Quasiparticle band gap of organic–inorganic hybrid perovskites: crystal structure, spin–orbit coupling, and self-energy effects. Phys. Rev. B 93, 085202 (2016).

    Google Scholar 

  79. 79

    Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

    CAS  Google Scholar 

  80. 80

    Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 10, 53–59 (2016).

    CAS  Google Scholar 

  81. 81

    Wright, A. D. et al. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).

    Google Scholar 

  82. 82

    Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    CAS  Google Scholar 

  83. 83

    Kawai, H., Giorgi, G., Marini, A. & Yamashita, K. The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron–phonon interaction. Nano Lett. 15, 3103–3108 (2015).

    CAS  Google Scholar 

  84. 84

    Brivio, F., Butler, K. T., Walsh, A. & Schilfgaarde, M. V. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

    Google Scholar 

  85. 85

    Filippetti, A., Mattoni, A., Caddeo, C., Saba, M. I. & Delugas, P. Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH3NH3PbI3 perovskites. Phys. Chem. Chem. Phys. 18, 15352–15362 (2016).

    CAS  Google Scholar 

  86. 86

    Brenner, T. M. et al. Are mobilities in hybrid organic-inorganic halide perovskites actually “high”? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

    CAS  Google Scholar 

  87. 87

    Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    CAS  Google Scholar 

  88. 88

    Bokdam, M. et al. Role of polar phonons in the photo excited state of metal halide perovskites. Sci. Rep. 6, 28618 (2016).

    CAS  Google Scholar 

  89. 89

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    CAS  Google Scholar 

  90. 90

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    CAS  Google Scholar 

  91. 91

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Google Scholar 

  92. 92

    Brandt, R. E., Stevanovic´, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    CAS  Google Scholar 

  93. 93

    Yin, W., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Google Scholar 

  94. 94

    Kim, J., Lee, S., Lee, J. H. & Hong, K. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

    CAS  Google Scholar 

  95. 95

    Schulz, P. et al. Electronic level alignment in inverted organometal perovskite solar cells. Adv. Mater. Interfaces 2, 1400532 (2015).

    Google Scholar 

  96. 96

    Adinolfi, V. et al. The in-gap electronic state spectrum of methylammonium lead iodide single-crystal perovskites. Adv. Mater. 28, 3406–3410 (2016).

    CAS  Google Scholar 

  97. 97

    Philippe, B. et al. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures — a photoelectron spectroscopy investigation. Chem. Mater. 27, 1720–1731 (2015).

    CAS  Google Scholar 

  98. 98

    Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

    CAS  Google Scholar 

  99. 99

    Lindblad, R. et al. Electronic structure of CH3NH3PbX3 perovskites: dependence on the halide moiety. J. Phys. Chem. C 119, 1818–1825 (2015).

    CAS  Google Scholar 

  100. 100

    Stranks, S. D. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    CAS  Google Scholar 

  101. 101

    Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    Google Scholar 

  102. 102

    Shi, D. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS  Google Scholar 

  103. 103

    Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016).

    CAS  Google Scholar 

  104. 104

    Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 27, 7938–7944 (2015).

    CAS  Google Scholar 

  105. 105

    Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CHNH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    CAS  Google Scholar 

  106. 106

    Nelson, R. J. & Sobers, R. G. Minority-carrier lifetimes and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

    CAS  Google Scholar 

  107. 107

    Tan, Z. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    CAS  Google Scholar 

  108. 108

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

    Google Scholar 

  109. 109

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    CAS  Google Scholar 

  110. 110

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    CAS  Google Scholar 

  111. 111

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    CAS  Google Scholar 

  112. 112

    Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008).

    CAS  Google Scholar 

  113. 113

    Zhang, W. et al. Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 28, 4040–4046 (2016).

    CAS  Google Scholar 

  114. 114

    Li, G. et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

    CAS  Google Scholar 

  115. 115

    Ling, Y. et al. Bright light-emitting diodes based on organometal halide perovskite nanoplatelets. Adv. Mater. 28, 305–311 (2016).

    CAS  Google Scholar 

  116. 116

    Kutes, Y. et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).

    CAS  Google Scholar 

  117. 117

    Stroppa, A., Quarti, C., De Angelis, F. & Picozzi, S. Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223–2231 (2015).

    CAS  Google Scholar 

  118. 118

    Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

    CAS  Google Scholar 

  119. 119

    Brivio, F., Walker, A. B. & Walsh, A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013).

    Google Scholar 

  120. 120

    Beilsten-Edmands, J., Eperon, G. E., Johnson, R. D., Snaith, H. J. & Radaelli, P. G. Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 173502 (2015).

    Google Scholar 

  121. 121

    Kim, M., Im, J., Freeman, A. J., Ihm, J. & Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

    CAS  Google Scholar 

  122. 122

    Stroppa, A. et al. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites. Nat. Commun. 5, 5900 (2014).

    CAS  Google Scholar 

  123. 123

    Feng, J. Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014).

    Google Scholar 

  124. 124

    Lee, Y., Mitzi, D. B., Barnes, P. W. & Vogt, T. Pressure-induced phase transitions and templating effect in three-dimensional organic–inorganic hybrid perovskites. Phys. Rev. B 68, 020103 (2003).

    Google Scholar 

  125. 125

    Sun, S., Fang, Y., Kieslich, G., White, T. J. & Cheetham, A. K. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015).

    CAS  Google Scholar 

  126. 126

    Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals. MRS Commun. 5, 623–629 (2015).

    CAS  Google Scholar 

  127. 127

    Swainson, I. P., Tucker, M. G., Wilson, D. J., Winkler, B. & Milman, V. Pressure response of an organic–inorganic perovskite: methylammonium lead bromide. Chem. Mater. 19, 2401–2405 (2007).

    CAS  Google Scholar 

  128. 128

    Wang, Y. et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 137, 11144–11149 (2015).

    CAS  Google Scholar 

  129. 129

    Szafran´ski, M. & Katrusiak, A. Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide. J. Phys. Chem. Lett. 7, 3458–3466 (2016).

    Google Scholar 

  130. 130

    Jaffe, A. et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2, 201–209 (2016).

    CAS  Google Scholar 

  131. 131

    Wang, Z., Hu, K., Gao, S. & Kobayashi, H. Formate-based magnetic metal–organic frameworks templated by protonated amines. Adv. Mater. 22, 1526–1533 (2010).

    CAS  Google Scholar 

  132. 132

    Sletten, E. & Jensen, L. H. The crystal structure of dimethylammonium copper(II) formate, NH2(CH3)2[Cu(OOCH)3]. Acta Crystallogr. B 29, 1752–1756 (1973).

    CAS  Google Scholar 

  133. 133

    Marsh, R. E. On the structure of Zn(C4H8N2O6). Acta Crystallogr. C 42, 1327–1328 (1986).

    Google Scholar 

  134. 134

    Nifontova, G. A., Filipenko, O. S., Astokhova, I. P. & Lavrentiev, I. P. Copper oxidation in the CCL4-amide system — synthesis and structure of [CH3NH3][Cu(HCOO)3]. Koord. Khim. 16, 218–224 (1990).

    CAS  Google Scholar 

  135. 135

    Wang, X., Gan, L., Zhang, S. & Gao, S. Perovskite-like metal formates with weak ferromagnetism and as precursors to amorphous materials. Inorg. Chem. 43, 4615–4625 (2004).

    CAS  Google Scholar 

  136. 136

    Hu, K., Kurmoo, M., Wang, Z. & Gao, S. Metal-organic perovskites: synthesis, structures, and magnetic properties of [C(NH2)3][MII(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3 = guanidinium). Chem. Eur. J. 15, 12050–12064 (2009).

    CAS  Google Scholar 

  137. 137

    Pato-Doldán, B. et al. Coexistence of magnetic and electrical order in the new perovskite-like (C3N2H5)[Mn(HCOO)3] formate. RSC Adv. 3, 22404–22411 (2013).

    Google Scholar 

  138. 138

    Chen, S., Shang, R., Hu, K., Wang, Z. & Gao, S. [NH2NH3][M(HCOO)3] (M = Mn2+, Zn2+, Co2+ and Mg2+): structural phase transitions, prominent dielectric anomalies and negative thermal expansion, and magnetic ordering. Inorg. Chem. Front. 1, 83–98 (2014).

    CAS  Google Scholar 

  139. 139

    Maç zka, M. et al. Perovskite metal formate framework of [NH2-CH+-NH2]Mn(HCOO)3]: phase transition, magnetic, dielectric, and phonon properties. Inorg. Chem. 53, 5260–5268 (2014).

    Google Scholar 

  140. 140

    Ciupa, A. et al. Synthesis, crystal structure, magnetic and vibrational properties of formamidine-templated Co and Fe formates. Polyhedron 85, 137–143 (2015).

    CAS  Google Scholar 

  141. 141

    Gao, S. & Ng, S. W. Poly[dimethylammonium [tris(μ2-formato-κ2O :Oʹ)cadmate(II)]]. . Acta Crystallogr. E 66, m1599 (2010).

    CAS  Google Scholar 

  142. 142

    Wöhlert, S., Wriedt, M., Jess, I. & Nä ther, C. Polymeric potassium triformatocobalt(II). Acta Crystallogr. E 67, m422 (2011).

    Google Scholar 

  143. 143

    Rossin, A. et al. Phase transitions and CO2 adsorption properties of polymeric magnesium formate. Cryst. Growth Des. 8, 3302–3308 (2008).

    CAS  Google Scholar 

  144. 144

    Bocˇ a, M., Svoboda, I., Renz, F. & Fuess, H. Poly[methylammonium tris(μ2-formato-κ2O:Oʹ)cobalt(II)]. Acta Crystallogr. C 60, m631–m633 (2004).

    Google Scholar 

  145. 145

    Ma˛czka, M. et al. Order-disorder transition and weak ferromagnetism in the perovskite metal formate frameworks of [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3] (M = Ni, Mn). Inorg. Chem. 53, 457–467 (2014).

    Google Scholar 

  146. 146

    Eikeland, E. et al. Alkali metal ion templated transition metal formate framework materials: synthesis, crystal structures, ion migration, and magnetism. Inorg. Chem. 53, 10178–10188 (2014).

    CAS  Google Scholar 

  147. 147

    Liu, J. -Q. et al. Temperature identification on two 3D Mn(II) metal–organic frameworks: syntheses, adsorption and magnetism. RSC Adv. 4, 20605–20611 (2014).

    CAS  Google Scholar 

  148. 148

    Maçzka, M. et al. Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate. Phys. Chem. Chem. Phys. 18, 13993–14000 (2016).

    Google Scholar 

  149. 149

    Cepeda, J. et al. Exploiting synthetic conditions to promote structural diversity within the scandium(III)/pyrimidine-4,6-dicarboxylate system. Cryst. Growth Des. 15, 2352–2363 (2015).

    CAS  Google Scholar 

  150. 150

    Wang, B.-Q. Reversible high-temperature phase transition of a manganese(II) formate framework with imidazolium cations. Acta Crystallogr. C 69, 616–619 (2013).

    CAS  Google Scholar 

  151. 151

    Marsh, R. E. On the structure of Zn(C4H8N2O6). Acta Crystallogr. C 42, 1327–1328 (1986).

    Google Scholar 

  152. 152

    Han, C. Y., Liu, M. M. & Dang, Q. Q. Poly[tetramethylammonium [tri- μ2-formato-κ6O:Oʹ-manganate(II)]]. Acta Crystallogr. E 69, m541 (2013).

    CAS  Google Scholar 

  153. 153

    Xu, S. -Q.& Li, J.-M. Crystal structure of catena-(dimethylammonium) tris(μ2-formato)copper(II),[C2H8N][Cu(CHO2)3]. Z. Kristallogr. New Cryst. St. 224, 383–384 (2009).

    CAS  Google Scholar 

  154. 154

    Collings, I. E. et al. Compositional dependence of anomalous thermal expansion in perovskite-like ABX3 formates. Dalton Trans. 45, 4169–4178 (2016).

    CAS  Google Scholar 

  155. 155

    Jain, P. et al. Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal–organic frameworks (MOFs) with the perovskite ABX3 architecture. J. Am. Chem. Soc. 131, 13625–13627 (2009).

    CAS  Google Scholar 

  156. 156

    Shang, R., Chen, S., Wang, Z. & Gao, S. in Encyclopedia of Inorganic and Bioinorganic Chemistry (eds Scott, R. A. et al.) 1–23 (Wiley, 2014).

    Google Scholar 

  157. 157

    Wang, X., Wang, Z. & Gao, S. Constructing magnetic molecular solids by employing three-atom ligands as bridges. Chem. Commun. 281–294 (2008).

  158. 158

    Shang, R., Sun, X., Wang, Z. M. & Gao, S. Zinc-diluted magnetic metal formate perovskites: synthesis, structures, and magnetism of [CH3NH3][Mnx Zn1 − x(HCOO)3] (x = 0–1). Chem. Asian J. 7, 1697–1707 (2012).

    CAS  Google Scholar 

  159. 159

    Tian, Y. et al. Quantum tunneling of magnetization in a metal–organic framework. Phys. Rev. Lett. 112, 017202 (2014).

    Google Scholar 

  160. 160

    Fu, D. et al. A multiferroic perdeutero metal–organic framework. Angew. Chem. Int. Ed. 50, 11947–11951 (2011).

    CAS  Google Scholar 

  161. 161

    Hang, T., Zhang, W., Ye, H. & Xiong, R. Metal–organic complex ferroelectrics. Chem. Soc. Rev. 40, 3577–3598 (2011).

    CAS  Google Scholar 

  162. 162

    Zhang, W. & Xiong, R. Ferroelectric metal–organic frameworks. Chem. Rev. 112, 1163–1195 (2012).

    CAS  Google Scholar 

  163. 163

    Sánchez-Andújar, M. et al. Characterization of the order–disorder dielectric transition in the hybrid organic–inorganic perovskite-like formate Mn(HCOO)3[(CH3)2NH2]. Inorg. Chem. 49, 1510–1516 (2010).

    Google Scholar 

  164. 164

    Pato-Doldán, B. et al. Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]. Phys. Chem. Chem. Phys. 14, 8498–8501 (2012).

    Google Scholar 

  165. 165

    Di Sante, D., Stroppa, A., Jain, P. & Picozzi, S. Tuning the ferroelectric polarization in a multiferroic metal–organic framework. J. Am. Chem. Soc. 135, 18126–18130 (2013).

    CAS  Google Scholar 

  166. 166

    Ghosh, S., Di, S. D. & Stroppa, A. Strain tuning of ferroelectric polarization in hybrid organic inorganic perovskite compounds. J. Phys. Chem. Lett. 6, 4553–4559 (2015).

    CAS  Google Scholar 

  167. 167

    Chen, S., Shang, R., Wang, B., Wang, Z. & Gao, S. An A-site mixed-ammonium solid solution perovskite series of [(NH2NH3)x (CH3NH3)1 − x][Mn(HCOO)3] (x = 1.00–00.67). Angew. Chem. Int. Ed. 54, 11093–11096 (2015).

    CAS  Google Scholar 

  168. 168

    Kieslich, G. et al. Tuneable mechanical and dynamical properties in the ferroelectric perovskite solid solution [NH3NH2]1 − x[NH3OH]xZn(HCOO)3. Chem. Sci. 7, 5108–5112 (2016).

    CAS  Google Scholar 

  169. 169

    Zhou, B., Imai, Y., Kobayashi, A., Wang, Z. & Kobayashi, H. Giant dielectric anomaly of a metal–organic perovskite with four-membered ring ammonium cations. Angew. Chem. Int. Ed. 50, 11441–11445 (2011).

    CAS  Google Scholar 

  170. 170

    Imai, Y. et al. Freezing of ring-puckering molecular motion and giant dielectric anomalies in metal–organic perovskites. Chem. Asian J. 7, 2786–2790 (2012).

    CAS  Google Scholar 

  171. 171

    von Hippel, A. Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev. Mod. Phys. 22, 221–237 (1950).

    CAS  Google Scholar 

  172. 172

    Pohl, H. A. Giant polarization in high polymers. J. Electron. Mater. 15, 201–203 (1986).

    CAS  Google Scholar 

  173. 173

    Asaji, T. et al. Phase transition and ring-puckering motion in a metal–organic perovskite [(CH2)3NH2][Zn(HCOO)3]. J. Phys. Chem. A 116, 12422–12428 (2012).

    CAS  Google Scholar 

  174. 174

    Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    CAS  Google Scholar 

  175. 175

    Thomson, R. I., Jain, P., Cheetham, A. K. & Carpenter, M. A. Elastic relaxation behavior, magnetoelastic coupling, and order–disorder processes in multiferroic metal–organic frameworks. Phys. Rev. B 86, 214304 (2012).

    Google Scholar 

  176. 176

    Abhyankar, N., Bertaina, S. & Dalal, N. S. On Mn2+ EPR probing of the ferroelectric transition and absence of magnetoelectric coupling in dimethylammonium manganese formate (CH3)2NH2Mn(HCOO)3, a metal-organic complex with the Pb-free perovskite framework. J. Phys. Chem. C 119, 28143–28147 (2015).

    CAS  Google Scholar 

  177. 177

    Tian, Y. et al. Cross coupling between electric and magnetic orders in a multiferroic metal–organic framework. Sci. Rep. 4, 6062 (2014).

    CAS  Google Scholar 

  178. 178

    Tian, Y. et al. Electric control of magnetism in a multiferroic metal–organic framework. Phys. Status Solidi RRL 8, 91–94 (2014).

    CAS  Google Scholar 

  179. 179

    Tian, Y. et al. Observation of resonant quantum magnetoelectric effect in a multiferroic metal–organic framework. J. Am. Chem. Soc. 138, 782–785 (2016).

    CAS  Google Scholar 

  180. 180

    Gómez-Aguirre, L. C. et al. Magnetic ordering-induced multiferroic behavior in [CH3NH3][Co(HCOO)3] metal–organic framework. J. Am. Chem. Soc. 138, 1122–1125 (2016).

    Google Scholar 

  181. 181

    Stroppa, A. et al. Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal–organic framework. Angew. Chem. Int. Ed. 50, 5847–5850 (2011).

    CAS  Google Scholar 

  182. 182

    Stroppa, A., Barone, P., Jain, P., Perez-Mato, J. M. & Picozzi, S. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal–organic framework. Adv. Mater. 25, 2284–2290 (2013).

    CAS  Google Scholar 

  183. 183

    Tian, Y. et al. High-temperature ferroelectricity and strong magnetoelectric effects in a hybrid organic–inorganic perovskite framework. Phys. Status Solidi RRL 8, 62–67 (2015).

    Google Scholar 

  184. 184

    Tan, J., Jain, P. & Cheetham, A. K. Influence of ligand field stabilization energy on the elastic properties of multiferroic MOFs with the perovskite architecture. Dalton Trans. 41, 3949–3952 (2012).

    CAS  Google Scholar 

  185. 185

    Mautner, F. A. et al. Crystal structure and spectroscopic and magnetic properties of the manganese(II) and copper(II) azido-tetramethylammonium systems. Inorg. Chem. 38, 4647–4652 (1999).

    CAS  Google Scholar 

  186. 186

    Du, Z. et al. Above-room-temperature ferroelastic phase transition in a perovskite-like compound [N(CH3)4][Cd(N3)3]. Chem. Commun. 50, 1989–1991 (2014).

    CAS  Google Scholar 

  187. 187

    Du, Z. et al. Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials. Angew. Chem. Int. Ed. 54, 914–918 (2015).

    CAS  Google Scholar 

  188. 188

    Schlueter, J. A., Manson, J. L., Hyzer, K. A. & Geiser U. Spin canting in the 3D anionic dicyanamide structure (SPh3)Mn(dca)3 (Ph = phenyl, dca = dicyanamide). Inorg. Chem. 43, 4100–4102 (2004).

    CAS  Google Scholar 

  189. 189

    Bermúdez-García, J. M. et al. Role of temperature and pressure on the multisensitive multiferroic dicyanamide framework [TPrA][Mn(dca)3] with perovskite-like structure. Inorg. Chem. 54, 11680–11687 (2015).

    Google Scholar 

  190. 190

    Bermúdez-García, J. M. et al. Multiple phase and dielectric transitions on a novel multi-sensitive [TPrA][M(dca)3] (M: Fe2+, Co2+and Ni2+) hybrid inorganic–organic perovskite family. J. Mater. Chem. C 4, 4889–4898 (2016).

    Google Scholar 

  191. 191

    Zhang, X. et al. Dynamics of a caged imidazolium cation — toward understanding the order–disorder phase transition and the switchable dielectric constant. Chem. Commun. 51, 4568–4571 (2015).

    CAS  Google Scholar 

  192. 192

    Hill, J. A., Thompson, A. L. & Goodwin, A. L. Dicyanometallates as model extended frameworks. J. Am. Chem. Soc. 138, 5886–5896 (2016).

    CAS  Google Scholar 

  193. 193

    Lefebvre, J., Chartrand, D. & Leznoff, D. B. Synthesis, structure and magnetic properties of 2D and 3D [cation]{M[Au(CN)2]3} (M = Ni, Co) coordination polymers. Polyhedron 26, 2189–2199 (2007).

    CAS  Google Scholar 

  194. 194

    Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  Google Scholar 

  195. 195

    Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    CAS  Google Scholar 

  196. 196

    Scott, J. F. Electrocaloric materials. Annu. Rev. Mater. Res. 41, 229–240 (2011).

    CAS  Google Scholar 

  197. 197

    Xu, W. J. Molecular dynamics of flexible polar cations in a variable confined space: toward exceptional two-step nonlinear optical switches. Adv. Mater. 28, 5886–5890 (2016).

    CAS  Google Scholar 

  198. 198

    Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Robust dynamics. Nat. Chem. 2, 439–443 (2010).

    CAS  Google Scholar 

  199. 199

    Cheetham, A. K., Bennett, T. D., Coudert, F.-X. & Goodwin, A. L. Defects and disorder in metal organic frameworks. Dalton Trans. 45, 4113–4126 (2016).

    CAS  Google Scholar 

  200. 200

    Xu, W.-J., Du, Z.-Y., Zhang, W.-X., Chen, X.-M. Structural phase transitions in perovskite compounds based on diatomic or multiatomic bridges. CrystEngComm 18, 7915–7928 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W.-X. Zhang and the Materials Chemistry and Physics Group in Huazhong University of Science and Technology for help with figures. W.L. is grateful to P.-X. Lu for illuminating discussions. W.L., Z.W. and S.G. acknowledge funding support from the National Natural Science Foundation of China (Grant Nos. 21571072, 21621061, 21290171) and the 973 Programs (Grant no. 2014CB921301). A.K.C. acknowledges financial support from the Ras Al Khaimah Centre for Advanced Materials. F.D. acknowledges funding from a Herchel Smith Research Fellowship and a Winton Advanced Research Fellowship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Song Gao or Richard H. Friend or Anthony K. Cheetham.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, Z., Deschler, F. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat Rev Mater 2, 16099 (2017). https://doi.org/10.1038/natrevmats.2016.99

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing