Review Article | Published:

Phosphorene: from theory to applications

Nature Reviews Materials volume 1, Article number: 16061 (2016) | Download Citation

Abstract

2D materials are the focus of an intense research effort because of their unique properties and their potential for revealing intriguing new phenomena. Phosphorene, a monolayer of black phosphorus, earned its place among the family of 2D semiconductor materials when recent results unveiled its high carrier mobility, high optical and UV absorption, and other attractive properties, which are of particular interest for optoelectronic applications. Unlike graphene, phosphorene has an anisotropic orthorhombic structure that is ductile along one of the in-plane crystal directions but stiff along the other. This results in unusual mechanical, electronic, optical and transport properties that reflect the anisotropy of the lattice. This Review summarizes the physical properties of phosphorene and highlights the recent progress made in the preparation, isolation and characterization of this material. The role of defects and doping is discussed, and phosphorene-based devices are surveyed; finally, the remaining challenges and potential applications of phosphorene are outlined.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Phosphorus: Chemistry, Biochemistry and Technology 6th edn (CRC Press, 2013).

  2. 2.

    Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).

  3. 3.

    Further note on black phosphorus. J. Am. Chem. Soc. 38, 609–612 (1916).

  4. 4.

    Phosphorus at high temperatures and pressures. J. Chem. Phys. 5, 945–953 (1937).

  5. 5.

    The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953).

  6. 6.

    & (eds) Chemistry of the Elements (Elsevier, 2012).

  7. 7.

    & Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014).

  8. 8.

    , , , & Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118, 14051–14059 (2014).

  9. 9.

    , & Phase coexistence and metal–insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113, 046804 (2014).

  10. 10.

    & Superconducting phosphorus. Science 160, 994–995 (1968).

  11. 11.

    , & Calculation of band structure and superconductivity in the simple cubic phase of phosphorus. J. Low Temp. Phys. 75, 1–13 (1989).

  12. 12.

    , & Pressure dependence of superconductivity in simple cubic phosphorus. Phys. Rev. B 88, 064517 (2013).

  13. 13.

    , & The pressure effect on the superconducting transition temperature of black phosphorus. J. Phys. Condens. Matter 14, 10759 (2002).

  14. 14.

    , & Anomalous superconductivity and pressure induced phase transitions in black phosphorus. Solid State Commun. 54, 775–778 (1985).

  15. 15.

    et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

  16. 16.

    , & Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

  17. 17.

    et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

  18. 18.

    et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

  19. 19.

    , , & Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).

  20. 20.

    , , , & The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

  21. 21.

    , , & Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10, 3900–3917 (2016).

  22. 22.

    & Bond orbitals and bond energy in elementary phosphorus. J. Chem. Phys. 20, 29–34 (1952).

  23. 23.

    , & 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J. Chem. Phys. 42, 3631–3638 (1965).

  24. 24.

    Physics and Chemistry of Layered Materials Vol. 5 (Reidel, 1977).

  25. 25.

    , , , & Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71, 1718–1721 (1979).

  26. 26.

    , , , & High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

  27. 27.

    & Negative Poisson's ratio in single-layer black-phosphorus. Nat. Commun. 5, 4727 (2014).

  28. 28.

    , , & Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

  29. 29.

    & Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014).

  30. 30.

    et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

  31. 31.

    et al. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

  32. 32.

    et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 9, 8070–8077 (2015).

  33. 33.

    et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

  34. 34.

    , & Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B 90, 075429 (2014).

  35. 35.

    & Electron–hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

  36. 36.

    , & Excitons in boron nitride nanotubes: dimensionality effects. Phys. Rev. Lett. 96, 126104 (2006).

  37. 37.

    et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

  38. 38.

    et al. Unambiguous identification of monolayer phosphorene by phase-shifting interferometry. Preprint at (2014).

  39. 39.

    et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4, e312 (2015).

  40. 40.

    et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

  41. 41.

    et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10, 608–613 (2015).

  42. 42.

    et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2, 011001 (2015).

  43. 43.

    , , , & Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91, 205421 (2015).

  44. 44.

    & Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53, 753–755 (1985).

  45. 45.

    & Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014).

  46. 46.

    et al. Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 106, 022102 (2015).

  47. 47.

    et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014).

  48. 48.

    , , , & Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015).

  49. 49.

    et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).

  50. 50.

    , , & Large thermoelectric power factors in black phosphorus and phosphorene. Preprint at (2014).

  51. 51.

    et al. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014).

  52. 52.

    et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014).

  53. 53.

    , & Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun. 49, 879–881 (1984).

  54. 54.

    , , & Electron-doped phosphorene: a potential monolayer superconductor. Europhys. Lett. 108, 67004 (2014).

  55. 55.

    , & Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106, 113107 (2015).

  56. 56.

    The compressibility and pressure coefficient of resistance of ten elements. Proc. Am. Acad. Arts Sci. 76, 55–70 (1948).

  57. 57.

    , , & Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Jpn. J. Appl. Phys. 28, 1019 (1989).

  58. 58.

    , & Au3SnP7@Black phosphorus: an easy access to black phosphorus. Inorg. Chem. 46, 4028–4035 (2007).

  59. 59.

    , & A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 181, 1707–1711 (2008).

  60. 60.

    , , , & Toward an accurate estimate of the exfoliation energy of black phosphorus: a periodic quantum chemical approach. J. Phys. Chem. Lett. 7, 131–136 (2015).

  61. 61.

    , , , & The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 15, 8170–8175 (2015).

  62. 62.

    et al. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27, 1887–1892 (2015).

  63. 63.

    et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 50, 13338–13341 (2014).

  64. 64.

    et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9, 3596–3604 (2015).

  65. 65.

    et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett. 40, 3885–3888 (2015).

  66. 66.

    et al. Stable aqueous dispersions of optically and electronically active phosphorene. Preprint at (2016).

  67. 67.

    et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014).

  68. 68.

    et al. Phosphorene oxides: bandgap engineering of phosphorene by oxidation. Phys. Rev. B 91, 085407 (2015).

  69. 69.

    , , , & Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 046801 (2015).

  70. 70.

    et al. Intrinsic defects, fluctuations of the local shape, and the photo-oxidation of black phosphorus. ACS Cent. Sci. 1, 320–327 (2015).

  71. 71.

    et al. Interpreting core-level spectra of oxidizing phosphorene: theory and experiment. Phys. Rev. B 92, 125412 (2015).

  72. 72.

    , , , & Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

  73. 73.

    et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

  74. 74.

    , , & Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002 (2015).

  75. 75.

    et al. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 7, 14557–14562 (2015).

  76. 76.

    et al. Transport properties of ultrathin black phosphorus on hexagonal boron nitride. Appl. Phys. Lett. 106, 083505 (2015).

  77. 77.

    et al. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 6, 7702 (2015).

  78. 78.

    et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 5, 8989 (2015).

  79. 79.

    Encapsulation Nanotechnologies (Wiley, 2013).

  80. 80.

    et al. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).

  81. 81.

    et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

  82. 82.

    et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015).

  83. 83.

    et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015).

  84. 84.

    et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14, 6400–6406 (2014).

  85. 85.

    et al. Phosphorene: synthesis, scale-up, and quantitative optical Spectroscopy. ACS Nano 9, 8869–8884 (2015).

  86. 86.

    , , , & In situ thermal decomposition of exfoliated two-dimensional black phosphorus. J. Phys. Chem. Lett. 6, 773–778 (2015).

  87. 87.

    et al. Large frequency change with thickness in interlayer breathing mode: significant interlayer interactions in few layer black phosphorus. Nano Lett. 15, 3931–3938 (2015).

  88. 88.

    et al. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 15, 4080–4088 (2015).

  89. 89.

    , & Optical constants of graphene measured by spectroscopic ellipsometry. Appl. Phys. Lett. 97, 091904 (2010).

  90. 90.

    Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

  91. 91.

    , , , & Chemical modifications and stability of phosphorene with impurities: a first principles study. Phys. Chem. Chem. Phys. 17, 15209–15217 (2015).

  92. 92.

    , & Phosphorene nanoribbons. Europhys. Lett. 108, 47005 (2014).

  93. 93.

    , , , & Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. Nano Lett. 14, 6782–6786 (2014).

  94. 94.

    , , & Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17, 992–1000 (2015).

  95. 95.

    et al. Observation of tunable band gap and anisotropic dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

  96. 96.

    , , , & A first-principles study of sodium adsorption and diffusion on phosphorene. Phys. Chem. Chem. Phys. 17, 16398–16404 (2015).

  97. 97.

    et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16, 2145–2151 (2016).

  98. 98.

    et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 6, 6485 (2015).

  99. 99.

    & First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 119, 8199–8207 (2015).

  100. 100.

    , , & Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17, 13921–13928 (2015).

  101. 101.

    et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597–602 (2016).

  102. 102.

    , & Atomically thin dilute magnetism in Co-doped phosphorene. Phys. Rev. B 91, 155138 (2015).

  103. 103.

    et al. Tunable magnetism in transition-metal-decorated phosphorene. J. Phys. Chem. C 119, 10059–10063 (2015).

  104. 104.

    et al. Dilute magnetic semiconductor and half metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11, 77 (2016).

  105. 105.

    & Defects in phosphorene. J. Phys. Chem. C 119, 20474–20480 (2015).

  106. 106.

    et al. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9, 10411–10421 (2015).

  107. 107.

    & Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys. Rev. B 90, 085424 (2014).

  108. 108.

    , , & Engineering Schottky barrier in black phosphorus field effect devices for spintronic applications. Preprint at (2014).

  109. 109.

    et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).

  110. 110.

    et al. Black phosphorus based field effect transistors with simultaneously achieved near ideal subthreshold swing and high hole mobility at room temperature. Sci. Rep. 6, 24920 (2016).

  111. 111.

    , & Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

  112. 112.

    , & Applications of graphene devices in RF communications. IEEE Commun. Mag. 48, 122–128 (2010).

  113. 113.

    et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014).

  114. 114.

    , & Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014).

  115. 115.

    , , & Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015).

  116. 116.

    , , , & Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014).

  117. 117.

    et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

  118. 118.

    , & First-principle study on the optical response of phosphorene. Front. Phys. 10, 1–9 (2015).

  119. 119.

    , & Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).

  120. 120.

    , , & Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014).

  121. 121.

    et al. Atomic and electronic structure of exfoliated black phosphorus. J. Vacuum Sci. Technol. A 33, 060604 (2015).

  122. 122.

    et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

  123. 123.

    , , & When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8, 471–473 (2013).

  124. 124.

    , & High-efficient thermoelectric materials: the case of orthorhombic IV–VI compounds. Sci. Rep. 5, 9567 (2015).

  125. 125.

    et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

  126. 126.

    et al. Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Adv. Funct. Mater. 25, 2230–2236 (2015).

  127. 127.

    Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst. 86, 203–211 (1982).

  128. 128.

    et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 28, 4991–4997 (2016).

  129. 129.

    et al. Strongly modulated ambipolar characteristics of few-layer black phosphorus in oxygen. Preprint at (2016).

  130. 130.

    et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  131. 131.

    , , & Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

  132. 132.

    , & The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99, 261908 (2011).

  133. 133.

    , , & Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides. Phys. Rev. B 90, 045422 (2014).

  134. 134.

    , & Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).

Download references

Acknowledgements

M.W. acknowledges the financial support from the National Natural Science Foundation of China (Grant No. 21203154). Work at NTU was supported in part by Air Force Office of Scientific Research (Grant no. AFRLAFOSR/AOARD 134074), MOE Tier-2 grant (no. MOE2013-T2-2-049), and A*STAR SERC Grant (no. 1121202012). A.C., A.S.R. and A.H.C.N. were supported by the National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award “Novel 2D materials with tailored properties: beyond graphene” (Grant number R-144-000-295-281).

Author information

Author notes

    • Alexandra Carvalho
    •  & Min Wang

    These authors contributed equally to this work.

Affiliations

  1. Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117542, Singapore.

    • Alexandra Carvalho
    • , Aleksandr S. Rodin
    •  & Antonio H. Castro Neto
  2. Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.

    • Min Wang
  3. Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

    • Xi Zhu
    •  & Haibin Su
  4. Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, Singapore 639673, Singapore.

    • Haibin Su
  5. Energy Research Institute, Tianneng Group, Huaxi Industrial Function Zone, Changxing County, Zhejiang 313100, China.

    • Haibin Su

Authors

  1. Search for Alexandra Carvalho in:

  2. Search for Min Wang in:

  3. Search for Xi Zhu in:

  4. Search for Aleksandr S. Rodin in:

  5. Search for Haibin Su in:

  6. Search for Antonio H. Castro Neto in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Haibin Su or Antonio H. Castro Neto.

Supplementary information

PDF files

  1. 1.

    Supplementary information S1 (table)

    Elastic constants for bulk black phosphorus

  2. 2.

    Supplementary information S2 (table)

    Bandgap energies

  3. 3.

    Supplementary information S3 (table)

    Effective masses

  4. 4.

    Supplementary information S4 (table)

    Vibrational modes

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2016.61

Further reading