Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The evolution of multiferroics

A Correction to this article was published on 17 January 2019

Abstract

Materials with a coexistence of magnetic and ferroelectric order — multiferroics — provide an efficient route for the control of magnetism by electric fields. The study of multiferroics dates back to the 1950s, but in recent years, key discoveries in theory, synthesis and characterization techniques have led to a new surge of interest in these materials. Different mechanisms, such as lone-pair, geometric, charge-ordering and spin-driven effects, can support multiferroicity. The general focus of the field is now shifting into neighbouring research areas, as we discuss in this Review. Multiferroic thin-film heterostructures, device architectures, and domain and interface effects are explored. The violation of spatial and inversion symmetry in multiferroic materials is a key feature because it determines their properties. Other aspects, such as the non-equilibrium dynamics of multiferroics, are underrated and should be included in the topics that will define the future of the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mechanisms promoting the coexistence of magnetic and electric long-range order.
Figure 2: Types of single-phase multiferroic materials with their maximum polarization values.
Figure 3: Multiferroic thin-film architectures.
Figure 4: Domains and domain walls in type I and type II multiferroics.
Figure 5: Magnetic toroidal moments and monopoles in crystals.
Figure 6: Electromagnons in cycloidal spin structures.

References

  1. 1

    Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

    CAS  Google Scholar 

  2. 2

    Wang, K., Liu, J.-M. & Ren, Z. Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58, 321–448 (2009).

    CAS  Google Scholar 

  3. 3

    Dong, S., Liu, J.-M., Cheong, S.-W. & Ren, Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).

    CAS  Google Scholar 

  4. 4

    Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000). This paper points out the incompatibility of magnetic and electric order in perovskites; it initiated a search for multiferroic materials circumventing this conflict.

    CAS  Google Scholar 

  5. 5

    Smolenskii, G. A., Isupov, V. A., Krainik, N. N. & Agranovskaya, A. I. The coexistence of the ferroelectric and ferromagnetic states. Izv. Akad. Nauk SSSR, Ser. Fiz. 25, 1333–1339 (in russian) (1961); English translation available in Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.) 25, 1345–1350 (1961).

    CAS  Google Scholar 

  6. 6

    Ascher, E. Some properties of ferromagnetoelectric nickel–iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966).

    CAS  Google Scholar 

  7. 7

    Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Sov. Phys. -Usp. 137, 475– 493 (1982).

    Google Scholar 

  8. 8

    Schmid, H. The dice-stone ‘Der Wurfelstein’: some personal souvenirs around the discovery of the first ferromagnetic ferroelectric. Ferroelectrics 427, 1–33 (2012).

    CAS  Google Scholar 

  9. 9

    Newnham, R. E., Kramer, J. J., Schulze, W. A. & Cross, L. E. Magnetoferroelectricity in Cr2BeO4 . J. Appl. Phys. 49, 6088–6091 (1978). First report of magnetically induced ferroelectricity, which is well ahead of its time.

    CAS  Google Scholar 

  10. 10

    Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994). In this paper (and in the associated MEIPIC II conference) the term ‘multiferroics’ was coined. Many of the modern concepts of multiferroics can be traced back to this conference.

    Google Scholar 

  11. 11

    Fiebig, M., Lottermoser, T., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002). First work on multiferroic domain walls and magnetoelectric domain coupling effects in a type I multiferroic material.

    CAS  Google Scholar 

  12. 12

    Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003). Observation of giant magnetoelectric coupling effects in a type II multiferroic material.

    CAS  Google Scholar 

  13. 13

    Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    CAS  Google Scholar 

  14. 14

    Bousquet, E. & Cano, A. Non-collinear magnetism in multiferroic perovskites. J. Phys. Condens. Matter 28, 123001 (2016).

    Google Scholar 

  15. 15

    Barone, P. & Picozzi, S. Mechanisms and origin of multiferroicity. C. R. Phys. 16, 143–152 (2015).

    CAS  Google Scholar 

  16. 16

    Johnson, R. D. & Radaelli, P. G. Diffraction studies of multiferroics. Annu. Rev. Mater. Res. 44, 269–298 (2014).

    CAS  Google Scholar 

  17. 17

    Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003). First work on multiferroic BiFeO3 thin films.

    CAS  Google Scholar 

  18. 18

    Fedulov, S. A. Determination of Curie temperature for BiFeO3 ferroelectric. Dokl. Akad. Nauk SSSR 139, 1345 (in russian) (1961); English translation available in Sov. Phys. -Dokl. 6, 729 (1962).

    CAS  Google Scholar 

  19. 19

    Kiselev, S. V., Ozerov, R. P. & Zhdanov, G. S. Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Dokl. Akad. Nauk SSSR 145, 1255 (in russian) (1962); English translation available in Sov. Phys. -Dokl. 7, 742 (1963).

    CAS  Google Scholar 

  20. 20

    Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3 . Nat. Mater. 3, 164–170 (2004).

    CAS  Google Scholar 

  21. 21

    Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

    Google Scholar 

  22. 22

    Lilienblum, M. et al. Ferroelectricity in the multiferroic hexagonal manganites. Nat. Phys. 11, 1070–1074 (2015).

    CAS  Google Scholar 

  23. 23

    Coeuré, P., Guinet, F., Peuzin, J. C., Buisson, G. & Bertaut, E. F. Ferroelectric properties of hexagonal orthomanganites of yttrium and rare earths. Proc. Int. Meet. Ferroelectr. (Prague, 1966).

    Google Scholar 

  24. 24

    Fiebig, M. et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys. Rev. Lett. 84, 5620–5623 (2000).

    CAS  Google Scholar 

  25. 25

    Wang, W. W. et al. Room-temperature multiferroic hexagonal LuFeO3 films. Phys. Rev. Lett. 110, 237601 (2013).

    Google Scholar 

  26. 26

    Eibschütz, M., Guggenheim, H., Wemple, S., Camlibel, I. & DiDomenico, M. Ferroelectricity in BaM2+F4 . Phys. Lett. A 29, 409–410 (1969).

    Google Scholar 

  27. 27

    Ederer, C. & Spaldin, N. A. Electric-field-switchable magnets: the case of BaNiF4 . Phys. Rev. B 74, 020401 (2006).

    Google Scholar 

  28. 28

    Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Google Scholar 

  29. 29

    Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 . Nature 436, 1136–1138 (2005).

    CAS  Google Scholar 

  30. 30

    Van den Brink, J. & Khomskii, D. I. Multiferroicity due to charge ordering. J. Phys. Condens. Matter 20, 434217 (2008).

    Google Scholar 

  31. 31

    De Groot, J. et al. Charge order in LuFe2O4: an unlikely route to ferroelectricity. Phys. Rev. Lett. 108, 187601 (2012).

    CAS  Google Scholar 

  32. 32

    Jooss, C. et al. Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites. Proc. Natl Acad. Sci. USA 104, 13597–13602 (2007).

    CAS  Google Scholar 

  33. 33

    Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Progress Phys. 77, 076501 (2014).

    Google Scholar 

  34. 34

    Picozzi, S. & Stroppa, A. Advances in ab initio theory of multiferroics. Eur. Phys. J. B 85, 240 (2012).

    Google Scholar 

  35. 35

    Kimura, T. Spiral magnets as magnetoelectrics. Annu. Rev. Mater. Res. 37, 387–413 (2007).

    CAS  Google Scholar 

  36. 36

    Dzyaloshinskii, I. E. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Google Scholar 

  37. 37

    Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005). First paper, along with reference 38, to present a theory for magnetically induced ferroelectricity.

    Google Scholar 

  38. 38

    Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

    Google Scholar 

  39. 39

    Terada, N., Glazkova, Y. S. & Belik, A. A. Differentiation between ferroelectricity and thermally stimulated current in pyrocurrent measurements of multiferroic MMn7O12 (M = Ca, Sr, Cd, Pb). Phys. Rev. B 93, 155127 (2016).

    Google Scholar 

  40. 40

    Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12 . Phys. Rev. Lett. 108, 067201 (2012).

    CAS  Google Scholar 

  41. 41

    Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

    Google Scholar 

  42. 42

    Aoyama, T. et al. Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat. Commun. 5, 4927 (2014).

    CAS  Google Scholar 

  43. 43

    Arima, T. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Japan 76, 073702 (2007).

    Google Scholar 

  44. 44

    Rocquefelte, X., Schwarz, K., Blaha, P., Kumar, S. & van den Brink, J. Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nat. Commun. 4, 2511 (2013).

    Google Scholar 

  45. 45

    Fennie, C. J. Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008).

    Google Scholar 

  46. 46

    Varga, T. et al. Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3 . Phys. Rev. Lett. 103, 047601 (2009).

    CAS  Google Scholar 

  47. 47

    Evans, D. et al. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun. 4, 1534 (2013).

    CAS  Google Scholar 

  48. 48

    Mandal, P. et al. Designing switchable polarization and magnetization at room temperature in an oxide. Nature 525, 363–366 (2015).

    CAS  Google Scholar 

  49. 49

    Nan, C.-W., Bichurin, M. I., Dong, S., Viehland, D. & Srinivasan, G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Google Scholar 

  50. 50

    Kirchhof, C. et al. Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 102, 232905 (2013).

    Google Scholar 

  51. 51

    Sakai, H. et al. Displacement-type ferroelectricity with off-center magnetic ions in perovskite Sr1−xBaxMnO3 . Phys. Rev. Lett. 107, 137601 (2011).

    CAS  Google Scholar 

  52. 52

    Glavic, A. et al. Stability of spin-driven ferroelectricity in the thin-film limit: coupling of magnetic and electric order in multiferroic TbMnO3 films. Phys. Rev. B 88, 054401 (2013).

    Google Scholar 

  53. 53

    Martí, X. et al. Exchange biasing and electric polarization with YMnO3 . Appl. Phys. Lett. 89, 032510 (2006).

    Google Scholar 

  54. 54

    Yang, Y., Infante, I. C., Dkhil, B. & Bellaiche, L. Strain effects on multiferroic BiFeO3 films. C. R. Phys. 16, 193–203 (2015).

    CAS  Google Scholar 

  55. 55

    Heron, J. T., Schlom, D. G. & Ramesh, R. Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 1, 021303 (2014).

    Google Scholar 

  56. 56

    Sando, D., Barthélémy, A. & Bibes, M. BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter 26, 473201 (2014).

    CAS  Google Scholar 

  57. 57

    Scott, J. F. Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007).

    CAS  Google Scholar 

  58. 58

    Bibes, M. & Barthélémy, A. Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).

    CAS  Google Scholar 

  59. 59

    Trassin, M. Low energy consumption spintronics using multiferroic heterostructures. J. Phys. Condens. Matter 28, 033001 (2016).

    Google Scholar 

  60. 60

    Laukhin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).

    CAS  Google Scholar 

  61. 61

    Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005).

    Google Scholar 

  62. 62

    Allibe, J. et al. Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3 . Nano Lett. 12, 1141–1145 (2012).

    CAS  Google Scholar 

  63. 63

    Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

    CAS  Google Scholar 

  64. 64

    Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014). Presentation of the ultimate multiferroic device concept with repeated room-temperature magnetization reversal by an electric voltage.

    CAS  Google Scholar 

  65. 65

    Trassin, M. et al. Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys. Rev. B 87, 134426 (2013).

    Google Scholar 

  66. 66

    Thiele, C., Dörr, K., Bilani, O., Rödel, J. & Schultz, L. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A = Sr, Ca). Phys. Rev. B 75, 054408 (2007).

    Google Scholar 

  67. 67

    Bosak, A. A., Dubourdieu, C., Sénateur, J.-P., Gorbenko, O. Y. & Kaul, A. R. Epitaxial stabilization of hexagonal RMnO3 (R = EuDy) manganites. J. Mater. Chem. 12, 800–801 (2002).

    CAS  Google Scholar 

  68. 68

    Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    CAS  Google Scholar 

  69. 69

    Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

    CAS  Google Scholar 

  70. 70

    Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

    CAS  Google Scholar 

  71. 71

    Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010).

    CAS  Google Scholar 

  72. 72

    Becher, C. et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat. Nanotechnol. 10, 661–665 (2015).

    CAS  Google Scholar 

  73. 73

    White, J. S. et al. Strain-induced ferromagnetism in antiferromagnetic LuMnO3 thin films. Phys. Rev. Lett. 111, 037201 (2013).

    CAS  Google Scholar 

  74. 74

    Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

    Google Scholar 

  75. 75

    Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).

    CAS  Google Scholar 

  76. 76

    Lahtinen, T. H. E., Franke, K. J. A. & van Dijken, S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2, 258 (2012).

    Google Scholar 

  77. 77

    Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3 . Nat. Mater. 10, 753–758 (2011). First paper to point out that multiferroicity can emerge at interfaces or domain walls.

    CAS  Google Scholar 

  78. 78

    Brunskill, I. H. & Schmid, H. Polarized light studies of ferromagnetic/ferroelectric/ferroelastic domain patterns in NiCl and NiBr boracite. Ferroelectrics 36, 395–398 (1981).

    CAS  Google Scholar 

  79. 79

    Tabares-Muñoz, C., Rivera, J.-P. & Schmid, H. Ferroelectric domains, birefringence and absorption of single crystals of BiFeO3 . Ferroelectrics 55, 903–906 (1984).

    Google Scholar 

  80. 80

    Šafránková, M., Fousek, J. & Kižaev, S. A. Domains in ferroelectric YMnO3 . Czechoslovak. J. Phys. 17, 559–560 (1967).

    Google Scholar 

  81. 81

    Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Amer. B 22, 96–118 (2005).

    CAS  Google Scholar 

  82. 82

    Meier, D. et al. Observation and coupling of domains in a spin-spiral multiferroic. Phys. Rev. Lett. 102, 107202 (2009).

    CAS  Google Scholar 

  83. 83

    Leo, N. et al. Polarization control at spin-driven ferroelectric domain walls. Nat. Commun. 6, 6661 (2015).

    CAS  Google Scholar 

  84. 84

    Matsubara, M. et al. Magnetoelectric domain control in multiferroic TbMnO3 . Science 348, 1112–1115 (2015).

    CAS  Google Scholar 

  85. 85

    Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

    CAS  Google Scholar 

  86. 86

    Griffin, S. M. et al. Scaling behavior and beyond equilibrium in the hexagonal manganites. Phys. Rev. X 2, 041022 (2012).

    Google Scholar 

  87. 87

    Lin, S.-Z. et al. Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nat. Phys. 10, 970–977 (2014).

    CAS  Google Scholar 

  88. 88

    Meier, D. Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015).

    Google Scholar 

  89. 89

    Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009). This work demonstrated that domain walls can be a source of novel effects and functionalities in ferroelectric and multiferroic materials.

    CAS  Google Scholar 

  90. 90

    Salje, E. K. H. in Mesoscopic Phenomena in Multifunctional Materials Synthesis, Characterization, Modeling and Applications Vol. 198 (eds Saxena, A. & Planes, A. ) 201–223 (Springer, 2014).

    Google Scholar 

  91. 91

    Geng, Y., Lee, N., Choi, Y. J., Cheong, S.-W. & Wu, W. Collective magnetism at multiferroic vortex domain walls. Nano Lett. 12, 6055–6059 (2012).

    CAS  Google Scholar 

  92. 92

    Farokhipoor, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).

    CAS  Google Scholar 

  93. 93

    Kagawa, F. et al. Dynamics of multiferroic domain wall in spin-cycloidal ferroelectric DyMnO3 . Phys. Rev. Lett. 102, 057604 (2009).

    CAS  Google Scholar 

  94. 94

    Matsubara, M., Kaneko, Y., He, J. P., Okamoto, H. & Tokura, Y. Ultrafast polarization and magnetization response of multiferroic GaFeO3 using time-resolved nonlinear optical techniques. Phys. Rev. B 79, 140411 (2009).

    Google Scholar 

  95. 95

    Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

    CAS  Google Scholar 

  96. 96

    Lee, J. et al. Probing the interplay between quantum charge fluctuations and magnetic ordering in LuFe2O4 . Sci. Rep. 3, 2654 (2013).

    CAS  Google Scholar 

  97. 97

    Mochizuki, M. & Nagaosa, N. Theoretically predicted picosecond optical switching of spin chirality in multiferroics. Phys. Rev. Lett. 105, 147202 (2010).

    Google Scholar 

  98. 98

    Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    CAS  Google Scholar 

  99. 99

    Qi, J. et al. Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy. Appl. Phys. Lett. 101, 122904 (2012).

    Google Scholar 

  100. 100

    Bhattacharjee, S., Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Phys. Rev. Lett. 112, 147601 (2014).

    Google Scholar 

  101. 101

    Sheu, Y. M. et al. Ultrafast carrier dynamics and radiative recombination in multiferroic BiFeO3 . Appl. Phys. Lett. 100, 242904 (2012).

    Google Scholar 

  102. 102

    Hoffmann, T., Thielen, P., Becker, P., Bohatý, L. & Fiebig, M. Time-resolved imaging of magnetoelectric switching in multiferroic MnWO4 . Phys. Rev. B 84, 184404 (2011). First study of the dynamical evolution of magnetoelectric switching in a multiferroic.

    Google Scholar 

  103. 103

    Sheu, Y. M. et al. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure. Nat. Commun. 5, 5832 (2014).

    CAS  Google Scholar 

  104. 104

    Schick, D. et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3 . Phys. Rev. Lett. 112, 097602 (2014).

    Google Scholar 

  105. 105

    Krichevtsov, B. B., Pavlov, V. V., Pisarev, R. V. & Gridnev, V. N. Spontaneous nonreciprocal reflection of light from antiferromagnetic Cr2O3 . J. Phys. Condens. Matter 5, 8233–8244 (1993).

    CAS  Google Scholar 

  106. 106

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005).

    CAS  Google Scholar 

  107. 107

    Spaldin, N. A., Fechner, M., Bousquet, E., Balatsky, A. & Nordström, L. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88, 094429 (2013).

    Google Scholar 

  108. 108

    Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970).

    Google Scholar 

  109. 109

    Litvin, D. B. Ferroic classifications extended to ferrotoroidic crystals. Acta Crystallogr. Sect. A 64, 316–320 (2008).

    CAS  Google Scholar 

  110. 110

    Zel'dovich, I. B. Electromagnetic interaction with parity violation. J. Exp. Theor. Phys. 6, 1184–1186 (1958).

    CAS  Google Scholar 

  111. 111

    Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

    Google Scholar 

  112. 112

    Ederer, C. & Spaldin, N. A. Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 76, 214404 (2007).

    Google Scholar 

  113. 113

    Scagnoli, V. et al. Observation of orbital currents in CuO. Science 332, 696–698 (2011).

    CAS  Google Scholar 

  114. 114

    Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    CAS  Google Scholar 

  115. 115

    Zimmermann, A. S., Meier, D. & Fiebig, M. Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014).

    CAS  Google Scholar 

  116. 116

    Tolédano, P. et al. Primary ferrotoroidicity in antiferromagnets. Phys. Rev. B 92, 094431 (2015).

    Google Scholar 

  117. 117

    Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    CAS  Google Scholar 

  118. 118

    Fiebig, M., Lottermoser, T. & Pisarev, R. V. Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3 . J. Appl. Phys. 93, 8194–8196 (2003).

    CAS  Google Scholar 

  119. 119

    Qi, X.-L., Li, R., Zang, J. & Zhang, S.-C. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

    CAS  Google Scholar 

  120. 120

    Pimenov, a. et al. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys. 2, 97–100 (2006). This work identifies the magnetoelectric excitation of a multiferroic ground state.

    CAS  Google Scholar 

  121. 121

    Valdés Aguilar, R. et al. Origin of electromagnon excitations in multiferroic RMnO3 . Phys. Rev. Lett. 102, 047203 (2009).

    Google Scholar 

  122. 122

    Shuvaev, A. M., Travkin, V. D., Ivanov, V. Y., Mukhin, A. A. & Pimenov, A. Evidence for electroactive excitation of the spin cycloid in TbMnO3 . Phys. Rev. Lett. 104, 097202 (2010).

    CAS  Google Scholar 

  123. 123

    Cazayous, M. et al. Possible observation of cycloidal electromagnons in BiFeO3 . Phys. Rev. Lett. 101, 037601 (2008).

    CAS  Google Scholar 

  124. 124

    Jones, S. P. P. et al. High-temperature electromagnons in the magnetically induced multiferroic cupric oxide driven by intersublattice exchange. Nat. Commun. 5, 3787 (2014).

    CAS  Google Scholar 

  125. 125

    Seki, S., Kida, N., Kumakura, S., Shimano, R. & Tokura, Y. Electromagnons in the spin collinear state of a triangular lattice antiferromagnet. Phys. Rev. Lett. 105, 097207 (2010).

    CAS  Google Scholar 

  126. 126

    Krivoruchko, V. N. Electrically active magnetic excitations in antiferromagnets. Low Temp. Phys. 38, 807–818 (2012).

    CAS  Google Scholar 

  127. 127

    Arima, T. Non-reciprocal directional dichroism as an extension of the magneto-electric effect. J. Magnet. Soc. Japan 27, 1111–1116 (2003).

    CAS  Google Scholar 

  128. 128

    Keller, S. M. & Carman, G. P. Electromagnetic wave propagation in (bianisotropic) magnetoelectric materials. J. Intelligent Mater. Systems Struct. 24, 651–668 (2012).

    Google Scholar 

  129. 129

    Jung, J. H. et al. Optical magnetoelectric effect in the polar GaFeO3 ferrimagnet. Phys. Rev. Lett. 93, 037403 (2004).

    CAS  Google Scholar 

  130. 130

    Igarashi, J. & Nagao, T. Analysis of optical magnetoelectric effect in GaFeO3 . Phys. Rev. B 80, 054418 (2009).

    Google Scholar 

  131. 131

    Kézsmárki, I. et al. One-way transparency of four-coloured spin-wave excitations in multiferroic materials. Nat. Commun. 5, 3203 (2014).

    Google Scholar 

  132. 132

    Saito, M., Taniguchi, K. & Arima, T. Gigantic optical magnetoelectric effect in CuB2O4 . J. Phys. Soc. Japan 77, 013705 (2008).

    Google Scholar 

  133. 133

    Brown Jr, W. F., Shtrikman, S., Treves, D. Possibility of visual observation of antiferromagnetic domains. Appl. J. Phys. 34, 1233 (1963).

    Google Scholar 

  134. 134

    Krichevtsov, B. B., Pavlov, V. V., Pisarev, R. V. & Gridnev, V. N. Magnetoelectric spectroscopy of electronic transitions in antiferromagnetic Cr2O3 . Phys. Rev. Lett. 76, 4628–4631 (1996).

    CAS  Google Scholar 

  135. 135

    Kida, N. et al. Enhanced optical magnetoelectric effect in a patterned polar ferrimagnet. Phys. Rev. Lett. 96, 167202 (2006).

    CAS  Google Scholar 

  136. 136

    Figotin, A. & Vitebsky, I. Nonreciprocal magnetic photonic crystals. Phys. Rev. E 63, 066609 (2001).

    CAS  Google Scholar 

  137. 137

    Marinov, K., Boardman, a. D., Fedotov, V. a. & Zheludev, N. Toroidal metamaterial. New J. Phys. 9, 324–324 (2007).

    Google Scholar 

  138. 138

    Bita, I. & Thomas, E. L. Structurally chiral photonic crystals with magneto-optic activity: indirect photonic bandgaps, negative refraction, and superprism effects. J. Opt. Soc. Amer. B 22, 1199–1210 (2005).

    CAS  Google Scholar 

  139. 139

    Kida, N. et al. Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces. Phys. Rev. Lett. 99, 197404 (2007).

    CAS  Google Scholar 

  140. 140

    Kida, N. et al. Optical magnetoelectric effect in a submicron patterned magnet. Phys. Rev. Lett. 94, 077205 (2005).

    CAS  Google Scholar 

  141. 141

    Toyoda, S. et al. One-way transparency of light in multiferroic CuB2O4 . Phys. Rev. Lett. 115, 267207 (2015).

    CAS  Google Scholar 

  142. 142

    Miyahara, S. & Furukawa, N. Theory of magneto-optical effects in helical multiferroic materials via toroidal magnon excitation. Phys. Rev. B 89, 195145 (2014).

    Google Scholar 

  143. 143

    Takahashi, Y., Yamasaki, Y. & Tokura, Y. Terahertz magnetoelectric resonance enhanced by mutual coupling of electromagnons. Phys. Rev. Lett. 111, 037204 (2013).

    CAS  Google Scholar 

  144. 144

    Okamura, Y. et al. Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat. Commun. 4, 2391 (2013).

    CAS  Google Scholar 

  145. 145

    Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    CAS  Google Scholar 

  146. 146

    Mannhart, J. & Schlom, D. G. Oxide interfaces — an opportunity for electronics. Science 327, 1607–1611 (2010).

    CAS  Google Scholar 

  147. 147

    Walker, H. C. et al. Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3 . Science 333, 1273–1276 (2011).

    CAS  Google Scholar 

  148. 148

    Rushchanskii, K. Z. et al. A multiferroic material to search for the permanent electric dipole moment of the electron. Nat. Mater. 9, 649–654 (2010).

    CAS  Google Scholar 

  149. 149

    Scott, J. F. Room-temperature multiferroic magnetoelectrics. NPG Asia Mater. 5, e72 (2013).

    CAS  Google Scholar 

  150. 150

    Scott, J. F. & Blinc, R. Multiferroic magnetoelectric fluorides: why are there so many magnetic ferroelectrics? J. Phys. Condens. Matter 23, 113202 (2011).

    CAS  Google Scholar 

  151. 151

    Qin, W., Xu, B. & Ren, S. An organic approach for nanostructured multiferroics. Nanoscale 7, 9122–9132 (2015).

    CAS  Google Scholar 

  152. 152

    Wang, Y., Li, J. & Viehland, D. Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater. Today 17, 269–275 (2014).

    CAS  Google Scholar 

  153. 153

    Liu, M. Novel laminated multiferroic heterostructures for reconfigurable microwave devices. Chinese Sci. Bull. 59, 5180–5190 (2014).

    CAS  Google Scholar 

  154. 154

    Scott, J. F. Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012).

    CAS  Google Scholar 

  155. 155

    Hu, J.-M., Nan, C.-W. & Chen, L.-Q. Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: interface-charge and strain comediated magnetoelectric coupling. Phys. Rev. B 83, 134408 (2011).

    Google Scholar 

  156. 156

    Gajek, M. et al. Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007).

    CAS  Google Scholar 

  157. 157

    Myers, E. B. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    CAS  Google Scholar 

  158. 158

    Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Google Scholar 

  159. 159

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Google Scholar 

  160. 160

    Becher, C. et al. Functional ferroic heterostructures with tunable integral symmetry. Nat. Commun. 5, 4295 (2014).

    CAS  Google Scholar 

  161. 161

    Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    CAS  Google Scholar 

  162. 162

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Google Scholar 

  163. 163

    Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    CAS  Google Scholar 

  164. 164

    Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    CAS  Google Scholar 

  165. 165

    Hahn, E. L. Spin echoes. Phys. Rev. B 80, 580–594 (1950).

    Google Scholar 

  166. 166

    Elliott, S. J. & Nelson, P. A. Active noise control. IEEE Signal Process. Mag. 10, 12–35 (1993).

    Google Scholar 

  167. 167

    Wadhawan, V. K. Introduction to Ferroic Materials (Gordon and Breach, 2000).

    Google Scholar 

  168. 168

    Choi, Y. J. et al. Ferroelectricity in an ising chain magnet. Phys. Rev. Lett. 100, 047601 (2008).

    CAS  Google Scholar 

  169. 169

    Finger, T. et al. Magnetic order and electromagnon excitations in DyMnO3 studied by neutron scattering experiments. Phys. Rev. B 90, 224418 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors would like to dedicate this work to Hans Schmid, who coined the field of multiferroics and has been a continuous source of inspiration, both professionally and personally. Sadly, Hans passed away on 2 April 2015. The authors also thank A. Cano, for many enlightening discussions and for critical reading of the manuscript, and M. Fechner, for calculating the lone-pair structure in Fig. 1a.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manfred Fiebig.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiebig, M., Lottermoser, T., Meier, D. et al. The evolution of multiferroics. Nat Rev Mater 1, 16046 (2016). https://doi.org/10.1038/natrevmats.2016.46

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing