Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermomechanical processing of metallic glasses: extending the range of the glassy state

Abstract

For crystalline metals, the science, technology and application of thermomechanical processing are established, but this is not true for glasses. Metallic glasses — because they can be plastically deformed — offer a unique opportunity to study the effects of thermomechanical treatments on the structure and properties of glasses. Depending on the rate of cooling, various glassy states can form from a liquid. Slower cooling gives states of lower enthalpy and smaller volume; such states might also be reached by annealing, which induces structural ‘relaxation’. A reduction in the degree of relaxation, or ‘rejuvenation’, is achievable through processes such as irradiation and mechanical deformation. In this Review, we explore the extent of relaxation and rejuvenation induced by thermomechanical processing (that is, elastic and plastic deformation, including cold and hot working, and cyclic loading). The issues that remain to be investigated and the prospects for further progress are discussed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The deformation of metallic glasses.
Figure 2: Cold-working methods that permit heavy plastic deformation of metallic glasses at room temperature.
Figure 3: Relative enthalpies of deformed metallic states at room temperature.
Figure 4: Relaxation and rejuvenation.
Figure 5: Anisotropy induced by homogeneous flow.

References

  1. 1

    Klement, W., Willens, R. H. & Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960).

    CAS  Article  Google Scholar 

  2. 2

    Takeuchi, A. & Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005).

    Article  CAS  Google Scholar 

  3. 3

    Inoue, A. & Takeuchi, A. Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243–2267 (2011).

    Article  CAS  Google Scholar 

  4. 4

    Greer, A. L. in Physical Metallurgy 5th edn Vol. 1 Ch. 4 (eds Laughlin, D. E. & Hono, K. ) 305–385 (Elsevier, 2014).

    Book  Google Scholar 

  5. 5

    Wang, W. H. Bulk metallic glasses with functional physical properties. Adv. Mater. 21, 4524–4544 (2009).

    Article  CAS  Google Scholar 

  6. 6

    Inoue, A. et al. Development and applications of Fe- and Co-based bulk glassy alloys and their prospects. J. Alloys Comp. 615, S2–S8 (2014).

    Article  CAS  Google Scholar 

  7. 7

    Liebermann, H. H. The dependence of the geometry of glassy alloy ribbons on the chill block melt-spinning process parameters. Mater. Sci. Eng. 43, 203–210 (1980).

    Article  CAS  Google Scholar 

  8. 8

    Ashby, M. F. & Greer, A. L. Metallic glasses as structural materials. Scripta Mater. 54, 321–326 (2006).

    Article  CAS  Google Scholar 

  9. 9

    Xu, J. & Ma, E. Damage-tolerant Zr–Cu–Al-based bulk metallic glasses with record-breaking fracture toughness. J. Mater. Res. 29, 1489–1499 (2014).

    Article  CAS  Google Scholar 

  10. 10

    Greer, A. L. New horizons for glass formation and stability. Nat. Mater. 14, 542–546 (2015).

    Article  CAS  Google Scholar 

  11. 11

    Ren, S., Chen, D. & Zhao, X. Effect of ceramic rolling on the mechanical properties of Ti42.5Cu42.5Ni10Zr5 bulk metallic glass composite. Mater. Sci. Eng. A 646, 90–95 (2015).

    Article  CAS  Google Scholar 

  12. 12

    Verlinden, B., Driver, J., Samajdar, I. & Doherty, R. D. Thermo-Mechanical Processing of Metallic Materials (Elsevier, 2007).

    Google Scholar 

  13. 13

    Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012).

    Article  CAS  Google Scholar 

  14. 14

    Weaire, D., Ashby, M. F., Logan, J. & Weins, M. J. On the use of pair potentials to calculate the properties of amorphous metals. Acta Metall. 19, 779–788 (1971).

    Article  CAS  Google Scholar 

  15. 15

    Wang, G., Mattern, N., Pauly, S., Bednarcˇik, J. & Eckert, J. Atomic structure evolution in bulk metallic glass under compressive stress. Appl. Phys. Lett. 95, 251906 (2009).

    Article  CAS  Google Scholar 

  16. 16

    Egami, T., Iwashita, T. & Dmowski, W. Mechanical properties of metallic glasses. Metals 3, 77–113 (2013). A comprehensive review of the fundamentals of elastic and plastic deformation in metallic glasses.

    Article  CAS  Google Scholar 

  17. 17

    Egami, T. Atomic level stresses. Prog. Mater. Sci. 56, 637–653 (2011).

    Article  CAS  Google Scholar 

  18. 18

    Kuršumovic´, A. & Cantor, B. Anelastic crossover and creep recovery spectra in Fe40Ni40B20 metallic glass. Scripta Mater. 34, 1655–1660 (1996).

    Article  Google Scholar 

  19. 19

    Dmowski, W., Iwashita, T., Chuang, A., Almer, J. & Egami, T. Elastic heterogeneity in metallic glasses. Phys. Rev. Lett. 105, 205502 (2010).

    Article  CAS  Google Scholar 

  20. 20

    Sun, Y. H., Louzguine-Luzgin, D. V., Ketov, S. & Greer, A. L. Pure shear stress reversal on a Cu-based bulk metallic glass reveals a Bauschinger-type effect. J. Alloys Comp. 615, S75–S78 (2014).

    Article  CAS  Google Scholar 

  21. 21

    Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977). A fundamental study of deformation mechanisms in metallic glasses, with an analysis based on free volume as the order parameter.

    Article  CAS  Google Scholar 

  22. 22

    Greer, A. L., Cheng, Y. Q. & Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R 74, 71–132 (2013). A comprehensive review of shear bands and an explanation of the concept of shear-band engineering to improve mechanical properties.

    Article  Google Scholar 

  23. 23

    Johnson, W. L. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Article  CAS  Google Scholar 

  24. 24

    Argon, A. S. Plastic deformation in metallic glasses. Acta Metall. 27, 47–58 (1979). A pioneering study that established the concept of the shear transformation zone as the flow unit in metallic glasses.

    Article  CAS  Google Scholar 

  25. 25

    Schall, P., Weitz, D. A. & Spaepen, F. Structural rearrangements that govern flow in colloidal glasses. Science 318, 1895–1899 (2007).

    Article  CAS  Google Scholar 

  26. 26

    Falk, M. L. & Langer, J. S. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205 (1998).

    Article  CAS  Google Scholar 

  27. 27

    Takeuchi, S. & Edagawa, K. Atomistic simulation and modeling of localized shear deformation in metallic glasses. Prog. Mater. Sci. 56, 785–816 (2011).

    Article  CAS  Google Scholar 

  28. 28

    Falk, M. L. & Langer, J. S. Deformation and failure of amorphous, solidlike materials. Annu. Rev. Cond. Matter Phys. 2, 353–373 (2011).

    Article  CAS  Google Scholar 

  29. 29

    Shang, B. S., Li, M. Z., Yao, Y. G., Lu, Y. J. & Wang, W. H. Evolution of atomic rearrangements in deformation in metallic glasses. Phys. Rev. E 90, 042303 (2014).

    Article  CAS  Google Scholar 

  30. 30

    Krisponeit, J.-O. et al. Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses. Nat. Commun. 5, 3616 (2014).

    Article  CAS  Google Scholar 

  31. 31

    Tao, P.-J. et al. Zr-based bulk metallic glass with super-plasticity under uniaxial compression at room temperature. J. Non-Cryst. Solids 354, 3742–3746 (2008).

    Article  CAS  Google Scholar 

  32. 32

    Hebert, R. J. & Perepezko, J. H. Effect of cold-rolling on the crystallization behaviour of amorphous Al88Y7Fe5 alloy. Mater. Sci. Eng. A 375–377, 728–732 (2004).

    Article  CAS  Google Scholar 

  33. 33

    Cao, Q. P. et al. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass. Acta Mater. 58, 1276–1292 (2010).

    Article  CAS  Google Scholar 

  34. 34

    Takayama, S. Drawing of Pd77.5Cu6Si16.5 metallic glass wires. Mater. Sci. Eng. 38, 41–48 (1979).

    Article  CAS  Google Scholar 

  35. 35

    Meng, F., Tsuchiya, K., Li, S. & Yokoyama, Y. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass. Appl. Phys. Lett. 101, 121914 (2012). High-pressure torsion applied to a zirconium-based metallic glass has exerted the largest plastic strain and induced the highest stored energy of any study so far.

    Article  CAS  Google Scholar 

  36. 36

    Cao, Y. et al. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: experiment and modeling. Sci. Rep. 5, 10789 (2015).

    Article  Google Scholar 

  37. 37

    Concustell, A., Méar, F. O., Suriñach, S., Baró, M. D. & Greer, A. L. Structural relaxation and rejuvenation in a metallic glass induced by shot-peening. Philos. Mag. Lett. 89, 831–840 (2009).

    Article  CAS  Google Scholar 

  38. 38

    Yavari, A. R. et al. Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater. 53, 1611–1619 (2005).

    Article  CAS  Google Scholar 

  39. 39

    Jiang, W. H., Pinkerton, F. E. & Atzmon, M. Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Mater. 53, 3469–3477 (2005).

    Article  CAS  Google Scholar 

  40. 40

    He, L. et al. Orientation effect of pre-introduced shear bands in a bulk-metallic glass on its ‘work-ductilising’. Mater. Sci. Eng. A 496, 285–290 (2008).

    Article  CAS  Google Scholar 

  41. 41

    Liu, J. W., Cao, Q. P., Chen, L. Y., Wang, X. D. & Jiang, J. Z. Shear band evolution and hardness change in cold-rolled bulk metallic glasses. Acta Mater. 58, 4827–4840 (2010).

    Article  CAS  Google Scholar 

  42. 42

    Song, K. K. et al. Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass. Intermetallics 19, 1394–1398 (2011).

    Article  CAS  Google Scholar 

  43. 43

    Scudino, S., Jerliu, B., Surreddi, K. B., Kühn, U. & Eckert, J. Effect of cold rolling on compressive and tensile mechanical properties of Zr52.5Ti5Cu18Ni14.5Al10 bulk metallic glass. J. Alloys Comp. 509, S128–S130 (2011).

    Article  CAS  Google Scholar 

  44. 44

    Yokoyama, Y., Yamano, K., Fukaura, K., Sunada, H. & Inoue, A. Ductility improvement of Zr55Cu30Al10Ni5 bulk amorphous alloy. Scripta Mater. 44, 1529–1534 (2001).

    Article  CAS  Google Scholar 

  45. 45

    Lee, M. H. et al. Deformation-induced microstructural heterogeneity in monolithic Zr44Ti11Cu9.8Ni10.2Be25 bulk metallic glass. Phys. Stat. Solidi RRL 3, 46–48 (2009).

    Article  CAS  Google Scholar 

  46. 46

    Zhang, Y., Wang, W. H. & Greer, A. L. Making metallic glasses plastic by control of residual stress. Nat. Mater. 5, 857–860 (2006).

    Article  CAS  Google Scholar 

  47. 47

    Scudino, S. et al. Ductile bulk metallic glasses produced through designed heterogeneities. Scripta Mater. 65, 815–818 (2011).

    Article  CAS  Google Scholar 

  48. 48

    Liu, Y., Schumacher, G., Riesemeier, H. & Banhart, J. Change in atomic coordination in a heavily deformed metallic glass. J. Appl. Phys. 115, 203510 (2014).

    Article  CAS  Google Scholar 

  49. 49

    Waseda, Y., Aust, K. T. & Masumoto, T. Structural changes in amorphous Pd77Si17Cu6 due to cold rolling and low temperature annealing. Scripta Metall. 13, 187–190 (1979).

    Article  CAS  Google Scholar 

  50. 50

    Haruyama, O. et al. Characterization of free volume in cold-rolled Zr55Cu30Ni5Al10 bulk metallic glasses. Acta Mater. 61, 3224–3232 (2013).

    Article  CAS  Google Scholar 

  51. 51

    Vempati, U. K., Valavala, P. K., Falk. M. L., Almer, J. & Hufnagel, T. C. Length-scale dependence of elastic strain from scattering measurements in metallic glasses. Phys. Rev. B 85, 214201 (2012).

    Article  CAS  Google Scholar 

  52. 52

    Bever, M. B., Holt, D. L. & Titchener, A. L. The stored energy of cold work. Prog. Mater. Sci. 17, 5–177 (1972). A comprehensive review of the stored energy in the plastic deformation of crystalline alloys.

    Article  Google Scholar 

  53. 53

    Hasan, O. A. & Boyce, M. C. Energy storage during inelastic deformation of glassy polymers. Polymer 34, 5085–5092 (1993).

    Article  CAS  Google Scholar 

  54. 54

    Chen, H. S. Stored energy in a cold-rolled metallic glass. Appl. Phys. Lett. 29, 328–330 (1976). An early study on the stored energy of cold work in a metallic glass.

    Article  CAS  Google Scholar 

  55. 55

    Fecht, H. J., Hellstern, E., Fu, Z. & Johnson, W. L. Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A 21A, 2333–2337 (1990).

    Article  CAS  Google Scholar 

  56. 56

    Mehrtens, A., von Minnigerode, G., Oelgeschläger, D. & Samwer, K. Amorphization of the intermetallic compounds Co2Zr and Fe2Zr under mechanical grinding. Z. Phys. B 88, 25–34 (1992).

    Article  CAS  Google Scholar 

  57. 57

    Grant, D. M., Green, S. M. & Wood, J. V. The surface performance of shot peened and ion implanted NiTi shape memory alloy. Acta Metall. Mater. 43, 1045–1051 (1995).

    Article  CAS  Google Scholar 

  58. 58

    Busch, R., Schroers, J. & Wang, W. H. Thermodynamics and kinetics of bulk metallic glass. Mater. Res. Bull. 32, 620–623 (2007).

    Article  CAS  Google Scholar 

  59. 59

    Battezzati, L., Riontino, G., Baricco, M., Lucci, A. & Marino, F. A. DSC study of structural relaxation in metallic glasses prepared with different quenching rates. J. Non-Cryst. Solids 6162, 877–882 (1984).

    Article  Google Scholar 

  60. 60

    Jessen, B. & Woldt, E. Stored energy of the deformed metallic glass Ni78Si8B14 . Thermochim. Acta 151, 179–186 (1989).

    Article  CAS  Google Scholar 

  61. 61

    Bokeloh, J., Divinski, S. V., Reglitz, G. & Wilde, G. Tracer measurements of atomic diffusion inside shear bands of a bulk metallic glass. Phys. Rev. Lett. 107, 235503 (2011).

    Article  CAS  Google Scholar 

  62. 62

    Jiang, W. H., Pinkerton, F. E. & Atzmon, M. Deformation-induced nanocrystallization: a comparison of two amorphous Al-based alloys. J. Mater. Res. 20, 696–702 (2005).

    Article  CAS  Google Scholar 

  63. 63

    Pan, J., Chen, Q., Liu, L. & Li, Y. Softening and dilatation in a single shear band. Acta Mater. 59, 5146–5158 (2011).

    Article  CAS  Google Scholar 

  64. 64

    Maaß, R., Samwer, K., Arnold, K. & Volkert, C. A. A single shear band in a metallic glass: local core and wide soft zone. Appl. Phys. Lett. 105, 171902 (2014).

    Article  CAS  Google Scholar 

  65. 65

    Méar, F. O., Lenk, B., Zhang, Y. & Greer, A. L. Structural relaxation in a heavily cold-worked metallic glass. Scripta Mater. 59, 1243–1246 (2008).

    Article  CAS  Google Scholar 

  66. 66

    González, S. et al. Influence of the shot-peening intensity on the structure and near-surface mechanical properties of Ti40Zr10Cu38Pd12 bulk metallic glass. Appl. Phys. Lett. 103, 211907 (2013).

    Article  CAS  Google Scholar 

  67. 67

    Méar, F. O., Doisneau, B., Yavari, A. R. & Greer, A. L. Structural effects of shot-peening in bulk metallic glasses. J. Alloys Comp. 483, 256–259 (2009).

    Article  CAS  Google Scholar 

  68. 68

    Schroers, J. et al. Thermoplastic blow molding of metals. Mater. Today 14, 14–19 (2011).

    Article  Google Scholar 

  69. 69

    Kumar, G., Tang, H. X. & Schroers, J. Nanomoulding with amorphous metals. Nature 457, 868–872 (2009).

    Article  CAS  Google Scholar 

  70. 70

    Johnson, W. L. et al. Beating crystallization in glass-forming metals by millisecond heating and processing. Science 332, 828–833 (2011).

    Article  CAS  Google Scholar 

  71. 71

    Way, C., Wadhwa, P. & Busch, R. The influence of shear rate and temperature on the viscosity and fragility of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic-glass-forming liquid. Acta Mater. 55, 2977–2983 (2007).

    Article  CAS  Google Scholar 

  72. 72

    Demetriou, M. D. & Johnson, W. L. Shear flow characteristics and crystallization kinetics during steady non-isothermal flow of Vitreloy-1. Acta Mater. 52, 3403–3412 (2004).

    Article  CAS  Google Scholar 

  73. 73

    Shao, Z. et al. Shear-accelerated crystallization in a supercooled atomic liquid. Phys. Rev. E 91, 020301(R) (2015).

    Article  CAS  Google Scholar 

  74. 74

    Tong, Y. et al. Recovering compressive plasticity of bulk metallic glasses by high-temperature creep. Scripta Mater. 69, 570–573 (2013). A study showing that creep can induce rejuvenation in metallic glasses and can restore plasticity to samples embrittled by annealing.

    Article  CAS  Google Scholar 

  75. 75

    Tong, Y. et al. Structural rejuvenation in bulk metallic glasses. Acta Mater. 86, 240–246 (2015).

    Article  CAS  Google Scholar 

  76. 76

    Ichitsubo, T. et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Phys. Rev. Lett. 95, 245501 (2005).

    Article  CAS  Google Scholar 

  77. 77

    Wang, Y., Zhao, W., Li, G. & Liu, R. Effects of ultrasonic treatment on the structure and properties of Zr-based bulk metallic glasses. J. Alloys Comp. 544, 46–49 (2012).

    Article  CAS  Google Scholar 

  78. 78

    Packard, C. E., Franke, O., Homer, E. R. & Schuh, C. A. Nanoscale strength distribution in amorphous versus crystalline metals. J. Mater. Res. 25, 2251–2263 (2010).

    Article  CAS  Google Scholar 

  79. 79

    Packard, C. E., Homer, E. R., Al-Aqeeli, N. & Schuh, C. A. Cyclic hardening of metallic glasses under Hertzian contacts: experiments and STZ dynamics simulations. Philos. Mag. 90, 1373–1390 (2010). A demonstration that cyclic loading in the elastic range can induce a hardening effect in metallic glasses.

    Article  CAS  Google Scholar 

  80. 80

    Al-Aqeeli, N. Strengthening behaviour due to cyclic elastic loading in Pd-based metallic glass. J. Alloys Comp. 509, 7216–7220 (2011).

    Article  CAS  Google Scholar 

  81. 81

    Deng, C. & Schuh, C. A. Atomistic mechanisms of cyclic hardening in metallic glass. Appl. Phys. Lett. 100, 251909 (2012).

    Article  CAS  Google Scholar 

  82. 82

    Cao, R., Deng, Y. & Deng, C. Hardening and crystallization in monatomic metallic glass during elastic cycling. J. Mater. Res. 30, 1820–1826 (2015).

    Article  CAS  Google Scholar 

  83. 83

    El-Shabasy, A. B. & Lewandowski, J. J. Fatigue coaxing experiments on a Zr-based bulk-metallic glass. Scripta Mater. 62, 481–484 (2010).

    Article  CAS  Google Scholar 

  84. 84

    Tong, P. et al. Structural irreversibility and enhanced brittleness under fatigue in Zr-based amorphous solids. Metals 2, 529–539 (2012).

    Article  CAS  Google Scholar 

  85. 85

    Ye, J. C., Lu, J., Liu, C. T., Wang, Q. & Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 9, 619–623 (2010). A demonstration of hysteretic behaviour on cycling in the elastic range.

    Article  CAS  Google Scholar 

  86. 86

    Wang, Z., Wen, P., Huo, L. S., Bai, H. Y. & Wang, W. H. Signature of viscous flow units in apparent elastic regime of metallic glasses. Appl. Phys. Lett. 101, 121906 (2012).

    Article  CAS  Google Scholar 

  87. 87

    Caron, A., Kawashima, A., Fecht, H.-J., Louzguine-Luzguin, D. V. & Inoue, A. On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass. Appl. Phys. Lett. 99, 171907 (2011).

    Article  CAS  Google Scholar 

  88. 88

    Yu, H.-B., Wang, W.-H. & Samwer, K. The β relaxation in metallic glasses: an overview. Mater. Today 16, 183–191 (2013).

    Article  CAS  Google Scholar 

  89. 89

    Tian, L. et al. Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).

    Article  CAS  Google Scholar 

  90. 90

    Wang, Z. T., Pan, J., Li, Y. & Schuh, C. A. Densification and strain hardening of a metallic glass under tension at room temperature. Phys. Rev. Lett. 111, 135504 (2013).

    Article  CAS  Google Scholar 

  91. 91

    Wang, Y., Zhao, W., Li, G., Li, Y. & Liu, R. Structural evolution of lanthanide-based metallic glasses under high pressure annealing. J. Alloys Comp. 551, 185–188 (2013).

    Article  CAS  Google Scholar 

  92. 92

    Lee, S.-C., Lee, C.-M., Yang, J.-W. & Lee, J.-C. Microstructural evolution of an elastostatically compressed amorphous alloy and its influence on the mechanical properties. Scripta Mater. 58, 591–594 (2008).

    Article  CAS  Google Scholar 

  93. 93

    Park, K. W. et al. Elastostatically induced structural disordering in amorphous alloys. Acta Mater. 56, 5440–5454 (2008).

    Article  CAS  Google Scholar 

  94. 94

    Ke, H. B., Wen, P., Peng, H. L., Wang, W. H. & Greer, A. L. Homogeneous deformation of metallic glass at room temperature reveals large dilatation. Scripta Mater. 64, 966–969 (2011).

    Article  CAS  Google Scholar 

  95. 95

    Lee, J.-C. Calorimetric study of β-relaxation in an amorphous alloy: an experimental technique for measuring the activation energy for shear transformation. Intermetallics 44, 116–120 (2014). A study on rejuvenation of metallic glasses by static loading in the elastic range.

    Article  CAS  Google Scholar 

  96. 96

    Greer, A. L. & Sun, Y. H. Stored energy in metallic glasses due to strains within the elastic limit. Philos. Mag. 96, 1643–1663 (2016).

    Article  CAS  Google Scholar 

  97. 97

    Gu, J., Song, M., Ni, S., Liao, X. & Guo, S. Improving the plasticity of bulk metallic glasses via pre-compression below the yield stress. Mater. Sci. Eng. A 602, 68–76 (2014).

    Article  CAS  Google Scholar 

  98. 98

    Lee, C.-M., Park, K.-W. & Lee, J.-C. Plasticity improvement of a bulk amorphous alloy based on its viscoelastic nature. Scripta Mater. 59, 802–805 (2008).

    Article  CAS  Google Scholar 

  99. 99

    Ketov, S. V. et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200–203 (2015). This study shows that thermal cycling well below the glass-transition temperature can induce rejuvenation and can restore plasticity to samples embrittled by annealing.

    Article  CAS  Google Scholar 

  100. 100

    Lacks, D. J. & Osborne, M. J. Energy landscape picture of overaging and rejuvenation in a sheared glass. Phys. Rev. Lett. 93, 255501 (2004).

    Article  CAS  Google Scholar 

  101. 101

    Fiocco, D., Foffi, G. & Sastry, S. Oscillatory athermal quasistatic deformation of a model glass. Phys. Rev. E 88, 020301 (2013).

    Article  CAS  Google Scholar 

  102. 102

    Fiocco, D., Foffi, G. & Sastry, S. Encoding of memory in sheared amorphous solids. Phys. Rev. Lett. 112, 025702 (2014).

    Article  CAS  Google Scholar 

  103. 103

    Egami, T., Flanders, P. J. & Graham, C. D. Jr. Low-field magnetic properties of ferromagnetic amorphous alloys. Appl. Phys. Lett. 26, 128–130 (1975).

    Article  CAS  Google Scholar 

  104. 104

    Spilsbury, D., Butvin, P., Cowlam, N., Howells, W. S. & Cooper, R. J. Some evidence for ‘directional atomic pair ordering’ in a cobalt-based metallic glass. Mater. Sci. Eng. A 226228, 187–191 (1997).

    Article  Google Scholar 

  105. 105

    Tarumi, R. et al. Elastic anisotropy of an Fe79Si12B9 amorphous alloy thin film studied by ultrasound spectroscopy. J. Appl. Phys. 101, 053519 (2007).

    Article  CAS  Google Scholar 

  106. 106

    Berry, B. S. & Pritchet, W. C. Magnetic annealing and directional ordering of an amorphous ferromagnetic alloy. Phys. Rev. Lett. 34, 1022–1025 (1975).

    Article  CAS  Google Scholar 

  107. 107

    González, J., Vázquez, M., Barandiarán, J. M., Madurga, V. & Hernando, A. Different kinds of magnetic anisotropies induced by current annealing in metallic glasses. J. Magn. Magn. Mater. 68, 151–156 (1987).

    Article  Google Scholar 

  108. 108

    Arakawa, S. et al. in Rapidly Quenched Metals (eds Steeb, S. & Warlimont, H. ) 1389–1392 (North-Holland, 1985).

    Google Scholar 

  109. 109

    Concustell, A., Godard-Desmarest, S., Carpenter, M. A., Nishiyama, N. & Greer, A. L. Induced elastic anisotropy in a bulk metallic glass. Scripta Mater. 64, 1091–1094 (2011). A study that shows frozen-in anelastic strain and viscous flow lead to anisotropy of opposite sign.

  110. 110

    Sun, Y. H. et al. Flow-induced elastic anisotropy of metallic glasses. Acta Mater. 112, 132–140 (2016).

    Article  CAS  Google Scholar 

  111. 111

    Ott, R. T. et al. Anelastic strain and structural anisotropy in homogeneously deformed Cu64.5Zr35.5 metallic glass. Acta Mater. 56, 5575–5583 (2008).

    Article  CAS  Google Scholar 

  112. 112

    Dmowski, W. & Egami, T. Structural anisotropy in metallic glasses induced by mechanical deformation. Adv. Eng. Mater. 10, 1003–1007 (2008). A structural study of induced anisotropy.

    Article  CAS  Google Scholar 

  113. 113

    Ott, R. T., Kramer, M. J., Besser, M. F. & Sordelet, D. J. High-energy X-ray measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass. Acta Mater. 54, 2463–2471 (2006).

    Article  CAS  Google Scholar 

  114. 114

    Nielsen, O. V. & Nielsen, H. J. V. Magnetic anisotropy in Co73Mo2Si15B10 and (Co0.89Fe0.11)72Mo3Si15B10 metallic glasses, induced by stress-annealing. J. Magn. Magn. Mater. 22, 21–24 (1980).

    Article  CAS  Google Scholar 

  115. 115

    Nielsen, O. V., Hernando, A., Madurga, V. & Gonzalez, J. M. Experiments concerning the origin of stress anneal induced magnetic anisotropy in metallic glass ribbons. J. Magn. Magn. Mater. 46, 341–349 (1985).

    Article  CAS  Google Scholar 

  116. 116

    Suzuki, Y., Haimovich, J. & Egami, T. Bond-orientational anisotropy in metallic glasses observed by X-ray diffraction. Phys. Rev. B 35, 2162–2168 (1987).

    Article  CAS  Google Scholar 

  117. 117

    Baumer, R. E. & Demkowicz, M. J. Radiation response of amorphous metal alloys: subcascades, thermal spikes and super-quenched zones. Acta Mater. 83, 419–430 (2015).

    Article  CAS  Google Scholar 

  118. 118

    Mayr, S. G. Impact of ion irradiation on the thermal, structural, and mechanical properties of metallic glasses. Phys. Rev. B 71, 144109 (2005).

    Article  CAS  Google Scholar 

  119. 119

    Zhang, H., Mei, X., Wang, Y., Wang, Z. & Wang, Y. Resistance to H+ induced irradiation damage in metallic glass Fe80Si7.43B12.57 . J. Nucl. Mater. 456, 344–350 (2015).

    Article  CAS  Google Scholar 

  120. 120

    Xiao, Q., Huang, L. & Shi, Y. Suppression of shear banding in amorphous ZrCuAl nanopillars by irradiation. J. Appl. Phys. 113, 083514 (2013).

    Article  CAS  Google Scholar 

  121. 121

    Huang, Y. et al. Structure and mechanical property modification of a Ti-based metallic glass by ion irradiation. Scripta Mater. 103, 41–44 (2015).

    Article  CAS  Google Scholar 

  122. 122

    Carter, J. et al. Effects of ion irradiation in metallic glasses. Nucl. Instrum. Methods Phys. Res. B 267, 1518–1521 (2009).

    Article  CAS  Google Scholar 

  123. 123

    Nagase, T. et al. MeV electron irradiation induced crystallization in metallic glasses: atomic structure, crystallization mechanism and stability of an amorphous phase under the radiation. J. Non-Cryst. Solids 358, 502–518 (2012).

    Article  CAS  Google Scholar 

  124. 124

    Miglierini, M. & Hasiak, M. Impact of ion irradiation upon structure and magnetic properties of NANOPERM-type amorphous and nanocrystalline alloys. J. Nanomater. 2015, 175407 (2015).

    Article  Google Scholar 

  125. 125

    Kramer, E. A., Johnson, W. L. & Cline, C. The effects of neutron irradiation on a superconducting metallic glass. Appl. Phys. Lett. 35, 815–818 (1979).

    Article  CAS  Google Scholar 

  126. 126

    Raghavan, R. et al. Ion irradiation enhances the mechanical performance of metallic glasses. Scripta Mater. 62, 462–465 (2010).

    Article  CAS  Google Scholar 

  127. 127

    Avchaciov, K. A., Ritter, Y., Djurabekova, F., Nordlund, K. & Albe, K. Effect of ion irradiation on structural properties of Cu64Zr36 metallic glass. Nucl. Instrum. Methods Phys. Res. B 341, 22–26 (2014).

    Article  CAS  Google Scholar 

  128. 128

    Gerling, R., Schimansky, F. P. & Wagner, R. Restoration of the ductility of thermally embrittled amorphous alloys under neutron-irradiation. Acta Metall. 35, 1001–1006 (1987). An important study showing that neutron irradiation can repeatedly restore plasticity in metallic glasses embrittled by thermal annealing. The damage level (displacements per atom) required to restore plasticity is characterized.

    Article  CAS  Google Scholar 

  129. 129

    Ediger, M. D. & Harrowell, P. Perspective: supercooled liquids and glasses. J. Chem. Phys. 137, 080901 (2012).

    Article  CAS  Google Scholar 

  130. 130

    Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    Article  CAS  Google Scholar 

  131. 131

    Yu, H.-B., Luo, Y. & Samwer, K. Ultrastable metallic glass. Adv. Mater. 25, 5904–5908 (2013).

    Article  CAS  Google Scholar 

  132. 132

    Aji, D. P. B. et al. Ultrastrong and ultrastable metallic glass. Preprint at http://arxiv.org/abs/1306.1575 (2013).

  133. 133

    Wang, J. Q. et al. The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 79, 30–36 (2014).

    Article  CAS  Google Scholar 

  134. 134

    Gleiter, H. Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitations of today? Acta Mater. 56, 5875–5893 (2008). An introduction and overview of the concept of ‘nanoglasses’.

    Article  CAS  Google Scholar 

  135. 135

    Fang, J. X. et al. Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12, 458–463 (2012).

    Article  CAS  Google Scholar 

  136. 136

    Wang, X. L. et al. Plasticity of a scandium-based nanoglass. Scripta Mater. 98, 40–43 (2015).

    Article  CAS  Google Scholar 

  137. 137

    Franke, O., Leisen, D., Gleiter, H. & Hahn, H. Thermal and plastic behavior of nanoglasses. J. Mater. Res. 29, 1210–1216 (2014).

    Article  CAS  Google Scholar 

  138. 138

    Wang, X. D. et al. Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses. Scripta Mater. 64, 81–84 (2011).

    Article  CAS  Google Scholar 

  139. 139

    Chen, N. et al. Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59, 6433–6440 (2011).

    Article  CAS  Google Scholar 

  140. 140

    Ichitsubo, T., Matsubara, E., Anazawa, K. & Nishiyama, N. Crystallization accelerated by ultrasound in Pd-based metallic glasses. J. Alloys Comp. 434435, 194–195 (2007).

    Article  CAS  Google Scholar 

  141. 141

    Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    Article  CAS  Google Scholar 

  142. 142

    Magagnosc, D. J. et al. Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires. Acta Mater. 74, 165–182 (2014).

    Article  CAS  Google Scholar 

  143. 143

    Gallino, I., Schroers, J. & Busch, R. Kinetic and thermodynamic studies of the fragility of bulk metallic glass forming liquids. J. Appl. Phys. 108, 063501 (2010).

    Article  CAS  Google Scholar 

  144. 144

    Donohue, A., Spaepen, F., Hoagland, R. G. & Misra, A. Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett. 91, 241905 (2007).

    Article  CAS  Google Scholar 

  145. 145

    Garner, F. A. Nuclear Materials Ch. 6 (ed. Frost, B. R. D. ) 436 (VCH, 1994).

    Google Scholar 

  146. 146

    Lu, J., Ravichandran, G. & Johnson, W. L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429–3443 (2003).

    Article  CAS  Google Scholar 

  147. 147

    Helgeson, M. E., Reichert, M. D., Hu, Y. T. & Wagner, N. J. Relating shear banding, structure, and phase behavior in wormlike micellar solutions. Soft Matter 5, 3858–3869 (2009).

    Article  CAS  Google Scholar 

  148. 148

    Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001).

    Article  CAS  Google Scholar 

  149. 149

    Tong, Y., Dmowski, W., Witczak, Z., Chuang, C.-P. & Egami, T. Residual elastic strain induced by equal channel angular pressing on bulk metallic glasses. Acta Mater. 61, 1204–1209 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.H.S. is supported by a China Scholarship Council (CSC) scholarship, and A.L.G. by the Engineering and the Engineering and Physical Sciences Research Council, UK, and the World Premier International Research Center Initiative (WPI), MEXT, Japan. Please note that no new data were created in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Lindsay Greer.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Concustell, A. & Greer, A. Thermomechanical processing of metallic glasses: extending the range of the glassy state. Nat Rev Mater 1, 16039 (2016). https://doi.org/10.1038/natrevmats.2016.39

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing