Review Article | Published:

Nonclassical nucleation and growth of inorganic nanoparticles

Nature Reviews Materials volume 1, Article number: 16034 (2016) | Download Citation

Abstract

The synthesis of nanoparticles with particular compositions and structures can lead to nanoparticles with notable physicochemical properties, thus promoting their use in various applications. In this area of nanoscience, the focus is shifting from size- and shape-uniform single-component nanoparticles to multicomponent nanoparticles with enhanced performance and/or multifunctionality. With the increasing complexity of synthetic reactions, an understanding of the formation mechanisms of the nanoparticles is needed to enable a systematic synthetic approach. This Review highlights mechanistic studies underlying the synthesis of nanoparticles, with an emphasis on nucleation and growth behaviours that are not expected from classical theories. We discuss the structural properties of nanoclusters that are of a size that bridges molecules and solids. We then describe the role of nanoclusters in the prenucleation process as well as in nonclassical nucleation models. The growth of nanoparticles via the assembly and merging of primary particles is also overviewed. Finally, we present the heterogeneous nucleation mechanisms behind the synthesis of multicomponent nanoparticles.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    , & Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

  2. 2.

    et al. Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002).

  3. 3.

    & Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

  4. 4.

    , , , & Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. Engl. 46, 4630–4660 (2007).

  5. 5.

    , , & Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

  6. 6.

    & Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5, 449–493 (2010).

  7. 7.

    Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011).

  8. 8.

    et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015). This paper provides a broad perspective on the current state of nanoscience and nanoparticle synthesis.

  9. 9.

    et al. Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys. Rev. Lett. 79, 1873–1876 (1997).

  10. 10.

    , & Electronic properties of small particles. Annu. Rev. Mater. Sci. 14, 49–66 (1984).

  11. 11.

    Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

  12. 12.

    & Charge transport dilemma of solution-processed nanomaterials. Chem. Mater. 26, 134–152 (2014).

  13. 13.

    , , & Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13–23 (2013).

  14. 14.

    et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

  15. 15.

    & Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

  16. 16.

    , & Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

  17. 17.

    et al. Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015).

  18. 18.

    & Building better batteries. Nature 451, 652–657 (2008).

  19. 19.

    , , , & Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

  20. 20.

    , & Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 52, 8526–8544 (2013).

  21. 21.

    & Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. Engl. 47, 9212–9228 (2008).

  22. 22.

    , , & Clusters, surfaces, and catalysis. Proc. Natl Acad. Sci. USA 103, 10577–10583 (2006).

  23. 23.

    & Drivers of biodiagnostic development. Nature 462, 461–464 (2009).

  24. 24.

    et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015).

  25. 25.

    , , & Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

  26. 26.

    , & Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. Engl. 49, 4878–4897 (2010).

  27. 27.

    & Nanoparticulate functional materials. Angew. Chem. Int. Ed. Engl. 49, 1362–1395 (2010).

  28. 28.

    & Emerging strategies for the total synthesis of inorganic nanostructures. Angew. Chem. Int. Ed. Engl. 52, 6154–6178 (2013).

  29. 29.

    , , & Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv. Mater. 21, 3045–3052 (2009).

  30. 30.

    , , & Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 26, 5–21 (2014).

  31. 31.

    The nanostructure problem. Physics 3, 25 (2010).

  32. 32.

    Preparation of monodispersed colloidal particles. Adv. Colloid Interfac. Sci. 28, 65–108 (1987).

  33. 33.

    , & Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 77402 (2004).

  34. 34.

    , & Aqueous formation and manipulation of the iron-oxo Keggin ion. Science 347, 1359–1362 (2015).

  35. 35.

    & (eds) Magnetism: Molecules to materials III: Nanosized Magnetic Materials (Wiley-VCH, 2002).

  36. 36.

    Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92, 1709–1727 (1992).

  37. 37.

    , , & Large clusters of metal ions: the transition from molecular to bulk magnets. Science 265, 1054–1058 (1994).

  38. 38.

    , , & Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 123, 2354–2364 (2001).

  39. 39.

    Shells of atoms. Phys. Rep. 273, 199–241 (1996).

  40. 40.

    Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603–649 (1994).

  41. 41.

    & Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–423 (2005).

  42. 42.

    Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1859 (2008).

  43. 43.

    The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 37, 1909–1930 (2008).

  44. 44.

    , , , & Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008).

  45. 45.

    , , , & On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 130, 3756–3757 (2008).

  46. 46.

    The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443–455 (2012).

  47. 47.

    , , & Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45, 1470–1479 (2012).

  48. 48.

    , , , & Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).

  49. 49.

    , , , & Structure of a thiol monolayer-protected gold nanoparticle at 1. 1 Å resolution. Science 318, 430–433 (2007).

  50. 50.

    et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

  51. 51.

    et al. Electron microscopy of gold nanoparticles at atomic resolution. Science 345, 909–912 (2014).

  52. 52.

    et al. A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. J. Am. Chem. Soc. 137, 1206–1212 (2015).

  53. 53.

    , , & Preparation and photoluminescent properties of gold(I)-alkanethiolate complexes having highly ordered supramolecular structures. Chem. Mater. 19, 6297–6303 (2007).

  54. 54.

    et al. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J. Phys. Chem. Lett. 2, 2752–2758 (2011).

  55. 55.

    et al. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 6, 8667 (2015).

  56. 56.

    , & The story of a monodisperse gold nanoparticle: Au25L18. Acc. Chem. Res. 43, 1289–1296 (2010).

  57. 57.

    & Unraveling the atomic structures of the Au68(SR)34 nanoparticles. J. Phys. Chem. C 119, 14224–14229 (2015).

  58. 58.

    , , & Molecular limit of a bulk semiconductor: size dependence of the “band gap” in CdSe cluster molecules. J. Am. Chem. Soc. 122, 2673–2674 (2000).

  59. 59.

    et al. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 136, 10645–10653 (2014).

  60. 60.

    et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 3, 99–102 (2004).

  61. 61.

    , , , & Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468–19474 (2009).

  62. 62.

    et al. Route to the smallest doped semiconductor: Mn2+-doped (CdSe)13 clusters. J. Am. Chem. Soc. 137, 12776–12779 (2015).

  63. 63.

    , & Synthesis and characterization of monodiserse nanocryastals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

  64. 64.

    Electrons in artificial atoms. Nature 379, 413–419 (1996).

  65. 65.

    , , , & Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 426, 59–62 (2003).

  66. 66.

    , & Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. Engl. 49, 1736–1758 (2010).

  67. 67.

    Structure of the molecule of 12-phosphotungstic acid. Nature 131, 908–909 (1933).

  68. 68.

    The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62) · 14H2O. Acta Cryst. 6, 113–126 (1953).

  69. 69.

    Constitution of the poly-acids. Nature 140, 850–850 (1937).

  70. 70.

    & Assembling crystals from clusters. Phys. Rev. Lett. 69, 1664–1667 (1992).

  71. 71.

    , & Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998).

  72. 72.

    , , & Rehybridization of electronic structure in compressed two-dimensional quantum dot superlattices. Phys. Rev. B 59, 1633–1636 (1999).

  73. 73.

    & From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010).

  74. 74.

    & Mesocrystals and Nonclassical Crystallization (Wiley, 2008).

  75. 75.

    et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015). This paper introduces various crystallization processes that do not belong to the picture of classical crystal growth theory.

  76. 76.

    The physics of star formation. Rep. Prog. Phys. 66, 1651–1697 (2003).

  77. 77.

    & Self-assembly at all scales. Science 295, 2418–2421 (2002).

  78. 78.

    Crystallization 4th edn (Butterworth-Heinemann, 2001).

  79. 79.

    & Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011). Two representative size distribution control methods for monodisperse nanoparticles are fully discussed with experimental evidence and theoretical models.

  80. 80.

    et al. Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J. Am. Chem. Soc. 129, 12571–12584 (2007).

  81. 81.

    & Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

  82. 82.

    On spinodal decomposition. Acta Mater. 9, 795–801 (1961).

  83. 83.

    et al. Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013). Conditions for the formation of amorphous nuclei and amorphous-to-crystalline phase transition are discussed in this paper.

  84. 84.

    & Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 119, 10382–10400 (1997). This study established autocatalytic formation kinetics of nanoclusters with emphasis on the interaction between the precursor and the preformed nanoclusters.

  85. 85.

    , & Mesocrystals: syntheses in metals and applications. Chem. Soc. Rev. 40, 5347–5360 (2011).

  86. 86.

    & Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41, 3594–3623 (2012).

  87. 87.

    , & In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. Engl. 46, 2028–2030 (2007).

  88. 88.

    et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 19, 548–552 (2007).

  89. 89.

    , , & Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J. Phys. Chem. C 111, 14977–14983 (2007).

  90. 90.

    , , , & Ultrabright PbSe magic-sized clusters. Nano Lett. 8, 2896–2899 (2008).

  91. 91.

    & Discontinuous growth of colloidal CdSe nanocrystals in the magic structure. J. Phys. Chem. C 113, 31–36 (2009).

  92. 92.

    & Study of magic-size-cluster mediated formation of CdS nanocrystals: properties of the magic-size clusters and mechanism implication. J. Phys. Chem. C 113, 12766–12771 (2009).

  93. 93.

    , , & Discontinuous growth of II–VI semiconductor nanocrystals from different materials. J. Phys. Chem. C 114, 6205–6215 (2010).

  94. 94.

    , & Synthesis of ultrasmall and magic-sized CdSe nanocrystals. Chem. Mater. 25, 1199–1210 (2013).

  95. 95.

    et al. Sizing by weighing: characterizing sizes of ultrasmall-sized iron oxide nanocrystals using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 135, 2407–2410 (2013).

  96. 96.

    . et al. Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS Nano 8, 10704–10714 (2014).

  97. 97.

    , & Stable prenucleation calcium carbonate clusters. Science 322, 1819–1822 (2008).

  98. 98.

    , , & Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 27, 1432–1441 (2015).

  99. 99.

    & Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002).

  100. 100.

    & Role of magic-sized clusters in the synthesis of CdSe nanorods. ACS Nano 4, 1561–1572 (2010).

  101. 101.

    , , , & Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

  102. 102.

    et al. Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nat. Mater. 9, 47–53 (2010).

  103. 103.

    & How does a transient amorphous precursor template crystallization. J. Am. Chem. Soc. 129, 13520–13526 (2007).

  104. 104.

    & Nucleation: what happens at the initial stage? Angew. Chem. Int. Ed. Engl. 48, 1308–1312 (2009).

  105. 105.

    & Multistep crystal nucleation: a kinetic study based on colloidal crystallization. J. Phys. Chem. B 111, 14001–14005 (2007).

  106. 106.

    & Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102, 198302 (2009).

  107. 107.

    & Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

  108. 108.

    The two-step mechanism of nucleation of crystals in solution. Nanoscale 2, 2346–2357 (2010).

  109. 109.

    Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc. Natl Acad. Sci. USA 101, 12096–12101 (2004).

  110. 110.

    Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 12, 2207–2215 (2011).

  111. 111.

    & Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J. Phys. Chem. B 104, 3481–3487 (2000).

  112. 112.

    The Ostwald step rule. J. Phys. Chem. 88, 5768–5769 (1984).

  113. 113.

    Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 82, 218–224 (1978).

  114. 114.

    et al. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 125, 6553–6557 (2003).

  115. 115.

    & Structural and vibrational analysis of amorphous Au55 clusters. Phys. Rev. B 54, 11796–11802 (1996).

  116. 116.

    , , & Investigation of the crystallization process in 2 nm CdSe quantum dots. J. Am. Chem. Soc. 127, 4372–4375 (2005).

  117. 117.

    , , , & Nanoparticles: strained and stiff. Science 305, 651–654 (2004).

  118. 118.

    et al. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. Phys. Rev. B 76, 115413 (2007).

  119. 119.

    , , & Growth dynamics of CdTe nanoparticles in liquid and crystalline phases. J. Am. Chem. Soc. 129, 7674–7679 (2007).

  120. 120.

    et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455–1458 (2009).

  121. 121.

    et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 4, 1507 (2013).

  122. 122.

    & Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 108, 4628–4669 (2008).

  123. 123.

    & Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011).

  124. 124.

    Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

  125. 125.

    , , , & Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338, 87–90 (2012).

  126. 126.

    , & Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3, 373–378 (2003).

  127. 127.

    et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309–1312 (2009).

  128. 128.

    , , & Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809–2813 (2011).

  129. 129.

    , , & Nanoreactors for studying single nanoparticle coarsening. J. Am. Chem. Soc. 134, 158–161 (2012).

  130. 130.

    et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 61–64 (2012).

  131. 131.

    , , & Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011–1014 (2012).

  132. 132.

    , , & High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv. Mater. 26, 3410–3414 (2014).

  133. 133.

    et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–49 (2008).

  134. 134.

    et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–448 (2012).

  135. 135.

    , , , & Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011).

  136. 136.

    et al. 3D structure of individual nanocrystals in solution by electron microscopy. Science 349, 290–295 (2015).

  137. 137.

    et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

  138. 138.

    et al. Precursor structures in the crystallization/precipitation processes of CaCO3 and control of particle formation by polyelectrolytes. Faraday Discuss. 136, 265–277 (2007).

  139. 139.

    et al. The development of morphology and structure in hexagonal vaterite. J. Am. Chem. Soc. 132, 11560–11565 (2010).

  140. 140.

    et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat. Mater. 5, 400–408 (2006).

  141. 141.

    , & Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem. Mater. 22, 3212–3225 (2010).

  142. 142.

    , , , & Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

  143. 143.

    & Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998).

  144. 144.

    & Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2. Am. Miner. 83, 1077–1082 (1998).

  145. 145.

    & Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999).

  146. 146.

    et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

  147. 147.

    , & Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. Engl. 41, 1188–1191 (2002).

  148. 148.

    , & Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

  149. 149.

    et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 127, 5662–5670 (2005).

  150. 150.

    , , & Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010).

  151. 151.

    & On the origin of a permanent dipole moment in nanocrystals with a cubic crystal lattice: effects of truncation, stabilizers, and medium for CdS tetrahedral homologues. J. Phys. Chem. B 110, 12211–12217 (2006).

  152. 152.

    et al. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 8, 3959–3963 (2008).

  153. 153.

    , , , & The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).

  154. 154.

    , , & Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

  155. 155.

    , & Nonadditivity of nanoparticle interactions. Science 350, 1242477(2015). The complexity of nanoparticle interactions is discussed in detail in this paper.

  156. 156.

    et al. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 6, 609–614 (2007).

  157. 157.

    , & Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393–395 (1999).

  158. 158.

    et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

  159. 159.

    & How do quasicrystals grow? Phys. Rev. Lett. 99, 235503 (2007).

  160. 160.

    , , , & Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

  161. 161.

    , , & Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 7, 1670–1675 (2007).

  162. 162.

    et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329, 550–553 (2010).

  163. 163.

    et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344, 1380–1384 (2014).

  164. 164.

    et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Ed. Engl. 48, 6861–6864 (2009).

  165. 165.

    et al. Dimension-controlled synthesis of CdS nanocrystals: from 0D quantum dots to 2D nanoplates. Small 8, 2394–2402 (2012).

  166. 166.

    et al. Colloidal synthesis of ultrathin two-dimensional semiconductor nanocrystals. Adv. Mater. 23, 3214–3219 (2011).

  167. 167.

    , , , & Advances in the colloidal synthesis of two-dimensional semiconductor nanoribbons. Chem. Mater. 25, 1190–1198 (2013).

  168. 168.

    , , , & Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 133, 17005–17013 (2011).

  169. 169.

    et al. Two-dimensional semiconductor nanocrystals: properties, templated formation, and magic-size nanocluster intermediates. Acc. Chem. Res. 48, 13–21 (2015).

  170. 170.

    et al. Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015).

  171. 171.

    , & Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 133, 3070–3077 (2011).

  172. 172.

    & Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. J. Am. Chem. Soc. 133, 6578–6586 (2011).

  173. 173.

    , , , & Structure identification of two-dimensional colloidal semiconductor nanocrystals with atomic flat basal planes. Nano Lett. 15, 4477–4482 (2015).

  174. 174.

    , & Investigation of low energy grain boundaries in metal by a sintering technique. Acta Metall. 24, 353–359 (1976).

  175. 175.

    , & Surface energy of nanostructural materials with negative curvature and related size effects. Chem. Rev. 109, 4221–4247 (2009).

  176. 176.

    et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

  177. 177.

    et al. Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties. ACS Nano 8, 11499–11511 (2014).

  178. 178.

    et al. Facet development during platinum nanocube growth. Science 345, 916–919 (2014).

  179. 179.

    , , & Mesocrystals in biominerals and colloidal arrays. Acc. Chem. Res. 48, 1391–1402 (2015).

  180. 180.

    & Mesocrystals — properties and applications. J. Phys. Chem. Lett. 3, 620–628 (2012).

  181. 181.

    , & Mesocrystal to single crystal transformation of D,L-alanine evidenced by small angle neutron scattering. J. Phys. Chem. C 111, 3224–3227 (2007).

  182. 182.

    & Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. Engl. 42, 2350–2365 (2003).

  183. 183.

    , , , & Thermodynamics versus kinetics in nanosynthesis. Angew. Chem. Int. Ed. Engl. 54, 2022–2051 (2015).

  184. 184.

    , & Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 41, 8050–8065 (2012).

  185. 185.

    Size effect in heterogeneous nucleation. J. Chem. Phys. 29, 572–576 (1958).

  186. 186.

    et al. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles. Science 319, 1374–1377 (2008).

  187. 187.

    & Microphysics of Clouds and Precipitation (Kluwer, 1997).

  188. 188.

    , & Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009).

  189. 189.

    , , , & High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals. Chem. Mater. 17, 4038–4042 (2005).

  190. 190.

    et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 14, 215–223 (2015). Heterogeneous nucleation kinetics of nanoparticles and their nucleation-induced structural changes are studied.

  191. 191.

    , , & Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals. Phys. Rev. Lett. 99, 265501 (2007).

  192. 192.

    & On the theory of interfacial energy and elastic strain of epitaxial overgrowths in parallel alignment on single crystal substrates. Phys. Stat. Sol. 19, 95–105 (1967).

  193. 193.

    & Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst.Growth 27, 118–125 (1974).

  194. 194.

    , & Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63 (2009).

  195. 195.

    , , , & Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals. Nano Lett. 13, 1367–1372 (2013).

  196. 196.

    & The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. J. Chem. Phys. 102, 4642–4656 (1995).

  197. 197.

    et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

  198. 198.

    et al. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 136, 7734–7739 (2014).

  199. 199.

    & Computational design of strain in core–shell nanoparticles for optimizing catalytic activity. Nano Lett. 15, 4089–4095 (2015).

  200. 200.

    & Coincidence lattice model for the structure and energy of grain boundaries. Acta Mater. 29, 1703–1719 (1981).

  201. 201.

    & Heteroepitaxy of large-misfit systems: role of coincidence lattice. Cryst. Res. Technol. 35, 793–806 (2000).

  202. 202.

    & γ-Fe2O3/II–VI sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 127, 10269–10275 (2005).

  203. 203.

    et al. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic γ-Fe2O3 spherical domain. J. Am. Chem. Soc. 128, 16953–16970 (2006).

  204. 204.

    , , , & Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787–1790 (2004).

  205. 205.

    , , , & Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 4, 855–863 (2005).

  206. 206.

    , , & Nonepitaxial growth of hybrid core–shell nanostructures with large lattice mismatches. Science 327, 1634–1638 (2010).

  207. 207.

    , , & Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665 (2004).

  208. 208.

    , & A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 4, 37–44 (2012).

  209. 209.

    et al. Formation of heterodimer nanocrystals: UO2/In2O3 and FePt/In2O3. J. Am. Chem. Soc. 133, 14327–14337 (2011).

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS) in Republic of Korea (IBS-R006-D1 and IBS-R006-Y1).

Author information

Author notes

    • Jisoo Lee
    •  & Jiwoong Yang

    These authors contributed equally to this work

Affiliations

  1. Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.

    • Jisoo Lee
    • , Jiwoong Yang
    • , Soon Gu Kwon
    •  & Taeghwan Hyeon
  2. School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

    • Jisoo Lee
    • , Jiwoong Yang
    • , Soon Gu Kwon
    •  & Taeghwan Hyeon

Authors

  1. Search for Jisoo Lee in:

  2. Search for Jiwoong Yang in:

  3. Search for Soon Gu Kwon in:

  4. Search for Taeghwan Hyeon in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Soon Gu Kwon or Taeghwan Hyeon.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2016.34