Review Article | Published:

Chemical principles of single-molecule electronics

Nature Reviews Materials volume 1, Article number: 16002 (2016) | Download Citation

Abstract

The field of single-molecule electronics harnesses expertise from engineering, physics and chemistry to realize circuit elements at the limit of miniaturization; it is a subfield of nanoelectronics in which the electronic components are single molecules. In this Review, we survey the field from a chemical perspective and discuss the structure–property relationships of the three components that form a single-molecule junction: the anchor, the electrode and the molecular bridge. The spatial orientation and electronic coupling between each component profoundly affect the conductance properties and functions of the single-molecule device. We describe the design principles of the anchor group, the influence of the electronic configuration of the electrode and the effect of manipulating the structure of the molecular backbone and of its substituent groups. We discuss single-molecule conductance switches as well as the phenomenon of quantum interference and then trace their fundamental roots back to chemical principles.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

  2. 2.

    & The long history of molecular electronics: microelectronics origins of nanotechnology. Soc. Stud. Sci. 39, 11–50 (2009).

  3. 3.

    Electron transport in molecular junctions. Nat. Nanotechnol. 1, 173–181 (2006).

  4. 4.

    & Molecular electronics with single molecules in solid-state devices. Nat. Nanotechnol. 4, 551–556 (2009).

  5. 5.

    & Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013).

  6. 6.

    , , , & Electronic and optical properties of electromigrated molecular junctions. J. Phys. Condens. Matter 20, 374118 (2008).

  7. 7.

    et al. Are single molecular wires conducting? Science 271, 1705–1707 (1996).

  8. 8.

    & Electron tunneling experiments using Nb–Sn ‘break’ junctions. J. Appl. Phys. 58, 3888–3895 (1985).

  9. 9.

    , & Experimental observation of the transition from weak link to tunnel junction. Phys. C Supercond. 191, 485–504 (1992).

  10. 10.

    et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

  11. 11.

    Conductance of a molecular junction. Science 278, 252–254 (1997).

  12. 12.

    & Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

  13. 13.

    , , , & Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

  14. 14.

    & Formation of metal–molecule–metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970–2971 (2000).

  15. 15.

    , , , & Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

  16. 16.

    et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273, 1690–1693 (1996).

  17. 17.

    et al. Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001).

  18. 18.

    et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

  19. 19.

    et al. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 11, 4607–4611 (2011).

  20. 20.

    , & Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 74, 2084–2086 (1999).

  21. 21.

    et al. Chemical fabrication of heterometallic nanogaps for molecular transport junctions. Nano Lett. 9, 3974–3979 (2009).

  22. 22.

    et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4, 230–234 (2009).

  23. 23.

    et al. Silicon ring strain creates high-conductance pathways in single-molecule circuits. J. Am. Chem. Soc. 135, 18331–18334 (2013).

  24. 24.

    et al. Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. J. Am. Chem. Soc. 136, 7327–7332 (2014).

  25. 25.

    et al. Charge transport in C60-based dumbbell-type molecules: mechanically induced switching between two distinct conductance states. J. Am. Chem. Soc. 137, 2318–2327 (2015).

  26. 26.

    et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

  27. 27.

    et al. A single-molecule potentiometer. Nano Lett. 11, 1575–1579 (2011).

  28. 28.

    et al. Unambiguous one-molecule conductance measurements under ambient conditions. Nano Lett. 11, 2236–2241 (2011).

  29. 29.

    et al. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

  30. 30.

    , , & Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nat. Mater. 11, 872–876 (2012).

  31. 31.

    et al. Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nat. Chem. 5, 187–194 (2013).

  32. 32.

    & Basic Principles of Ligand Field Theory (Wiley-Interscience, 1969).

  33. 33.

    et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

  34. 34.

    , , & Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

  35. 35.

    , , & Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012).

  36. 36.

    & Electron transport through single molecules: scattering treatment using density functional and green function theories. J. Phys. Chem. B 105, 471–481 (2001).

  37. 37.

    et al. Conductance and geometry of pyridine-linked single-molecule junctions. J. Am. Chem. Soc. 132, 6817–6821 (2010).

  38. 38.

    et al. Heat dissipation in atomic-scale junctions. Nature 498, 209–212 (2013).

  39. 39.

    , & Orbital control of single-molecule conductance perturbed by π-accepting anchor groups: cyanide and isocyanide. J. Phys. Chem. C 116, 20607–20616 (2012).

  40. 40.

    et al. Electric current through a molecular rod — relevance of the position of the anchor groups. Angew. Chem. Int. Ed. Engl. 42, 5834–5838 (2003).

  41. 41.

    , , , & Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes. Nat. Chem. 7, 209–214 (2015).

  42. 42.

    , , & Effect of anchoring groups on single molecule charge transport through porphyrins. J. Phys. Chem. C 117, 14890–14898 (2013).

  43. 43.

    et al. Frustrated rotations in single-molecule junctions. J. Am. Chem. Soc. 131, 10820–10821 (2009).

  44. 44.

    et al. Single-molecule conductance of functionalized oligoynes: length dependence and junction evolution. J. Am. Chem. Soc. 135, 12228–12240 (2013).

  45. 45.

    et al. Tuning rectification in single-molecular diodes. Nano Lett. 13, 6233–6237 (2013).

  46. 46.

    et al. Breakdown of interference rules in azulene, a nonalternant hydrocarbon. Nano Lett. 14, 2941–2945 (2014).

  47. 47.

    et al. Electronic transport in single molecule junctions: control of the molecule–electrode coupling through intramolecular tunneling barriers. Nano Lett. 8, 1–5 (2008).

  48. 48.

    , , , & Stereoelectronic switching in single-molecule junctions. Nat. Chem. 7, 215–220 (2015).

  49. 49.

    et al. Single-molecule conductance in atomically precise germanium wires. J. Am. Chem. Soc. 137, 12400–12405 (2015).

  50. 50.

    et al. Influence of binding groups on molecular junction formation. J. Am. Chem. Soc. 133, 14313–14319 (2011).

  51. 51.

    et al. Electric field breakdown in single molecule junctions. J. Am. Chem. Soc. 137, 5028–5033 (2015).

  52. 52.

    et al. Self-assembled monolayers and multilayers of conjugated thiols, α,ω-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces. J. Am. Chem. Soc. 117, 9529–9534 (1995).

  53. 53.

    The gold–sulfur interface at the nanoscale. Nat. Chem. 4, 443–455 (2012).

  54. 54.

    et al. Break-junction experiments on acetyl-protected conjugated dithiols under different environmental conditions. J. Phys. Chem. C 115, 17973–17978 (2011).

  55. 55.

    et al. Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006).

  56. 56.

    et al. Impact of junction formation method and surface roughness on single molecule conductance. J. Phys. Chem. C 113, 5823–5833 (2009).

  57. 57.

    et al. Conductance of single alkanedithiols: conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

  58. 58.

    , , , & Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128, 15874–15881 (2006).

  59. 59.

    et al. Charge transport in single Au/alkanedithiol/Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318–326 (2008).

  60. 60.

    et al. New insights into single-molecule junctions using a robust, unsupervised approach to data collection and analysis. J. Am. Chem. Soc. 137, 9971–9981 (2015).

  61. 61.

    , , & Binding configurations and intramolecular strain in single-molecule devices. Nat. Mater. 14, 517–522 (2015).

  62. 62.

    et al. Hapticity-dependent charge transport through carbodithioate-terminated [5,15-bis(phenylethynyl)porphinato]zinc(II) complexes in metal–molecule–metal junctions. Nano Lett. 14, 5493–5499 (2014).

  63. 63.

    et al. Trimethyltin-mediated covalent gold–carbon bond formation. J. Am. Chem. Soc. 136, 12556–12559 (2014).

  64. 64.

    , , , & Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11, 3734–3738 (2011).

  65. 65.

    et al. Variability of conductance in molecular junctions. J. Phys. Chem. B 110, 2462–2466 (2006).

  66. 66.

    , & Measurement of single molecule conductance: benzenedithiol and benzenedimethanedithiol. Nano Lett. 4, 267–271 (2004).

  67. 67.

    et al. In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6, 353–357 (2011).

  68. 68.

    et al. The scope of direct alkylation of gold surface with solutions of C1–C4 n-alkylstannanes. J. Am. Chem. Soc. 137, 12086–12099 (2015).

  69. 69.

    et al. Preparation of covalent long-chain trialkylstannyl and trialkylsilyl salts and an examination of their adsorption on gold. Langmuir 26, 8483–8490 (2010).

  70. 70.

    et al. Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes. J. Am. Chem. Soc. 133, 17160–17163 (2011).

  71. 71.

    et al. High-conductive organometallic molecular wires with delocalized electron systems strongly coupled to metal electrodes. Nano Lett. 14, 5932–5940 (2014).

  72. 72.

    et al. Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent Au–C σ-bonds. J. Am. Chem. Soc. 134, 19425–19431 (2012).

  73. 73.

    & Greene's Protective Groups in Organic Synthesis 4th edn (Wiley, 2006).

  74. 74.

    , & Preparation and characterization of STM tips for electrochemical studies. Rev. Sci. Instrum. 60, 3128–3130 (1989).

  75. 75.

    , , & Electrochemical modification of glassy carbon electrode using aromatic diazonium salts. 1. Blocking effect of 4-nitrophenyl and 4-carboxyphenyl groups. Langmuir 7463, 6805–6813 (1997).

  76. 76.

    et al. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups. J. Am. Chem. Soc. 135, 3319–3322 (2013).

  77. 77.

    Diazonium Diazo Groups Vol. 1 (Wiley, 1978).

  78. 78.

    Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

  79. 79.

    & Ueber synthesen in der biphenylreihe. Ber. Dtsch. Chem. Ges. 34, 2174–2185 (1901).

  80. 80.

    et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

  81. 81.

    , , & Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713–718 (2012).

  82. 82.

    & Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts. J. Am. Chem. Soc. 115, 9858–9859 (1993).

  83. 83.

    , , , & Formation of catalytic metal–molecule contacts. Science 309, 591–594 (2005).

  84. 84.

    , , & Conductance of molecular junctions formed with silver electrodes. Nano Lett. 13, 3358–3364 (2013).

  85. 85.

    , & Fabrication of a well-defined single benzene molecule junction using Ag electrodes. J. Phys. Chem. Lett. 1, 3520–3523 (2010).

  86. 86.

    , & Pd versus Au as evaporated metal contacts to molecules. Appl. Phys. Lett. 86, 2004–2006 (2005).

  87. 87.

    et al. Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101, 046801 (2008).

  88. 88.

    et al. Conductance and vibrational states of single-molecule junctions controlled by mechanical stretching and material variation. Phys. Rev. Lett. 106, 196804 (2011).

  89. 89.

    et al. Atomically wired molecular junctions: connecting a single organic molecule by chains of metal atoms. Nano Lett. 13, 1956–1961 (2013).

  90. 90.

    , , & Superior contact for single-molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au. J. Am. Chem. Soc. 132, 756–764 (2010).

  91. 91.

    , & Theoretical analysis of metal–molecule contacts. J. Am. Chem. Soc. 123, 5616–5617 (2001).

  92. 92.

    , Korytá, , & Impact of electrode density of states on transport through pyridine-linked single molecule junctions. Nano Lett. 15, 3716–3722 (2015).

  93. 93.

    et al. Giant magnetoresistance through a single molecule. Nat. Nanotechnol. 6, 185–189 (2011).

  94. 94.

    et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater. 6, 516–520 (2007).

  95. 95.

    et al. Visualizing the spin of individual cobalt–phthalocyanine molecules. Phys. Rev. Lett. 101, 40–43 (2008).

  96. 96.

    Unimolecular Electronics. Chem. Rev. 115, 5056–5115 (2015).

  97. 97.

    , & Probing hopping conduction in conjugated molecular wires connected to metal electrodes. Chem. Mater. 23, 631–645 (2011).

  98. 98.

    & Polysilane high polymers. Chem. Rev. 89, 1359–1410 (1989).

  99. 99.

    et al. Aromaticity decreases single-molecule junction conductance. J. Am. Chem. Soc. 136, 918–920 (2014).

  100. 100.

    , & Poly(isothianaphthene). J. Org. Chem. 49, 3382–3384 (1984).

  101. 101.

    et al. Functionalized isothianaphthene monomers that promote quinoidal character in donor–acceptor copolymers for organic photovoltaics. Macromolecules 45, 4069–4074 (2012).

  102. 102.

    & Charge transport in nanoscale aromatic and antiaromatic systems. J. Phys. Condens. Matter 20, 374104 (2008).

  103. 103.

    et al. Electronics and chemistry: varying single-molecule junction conductance using chemical substituents. Nano Lett. 7, 502–506 (2007).

  104. 104.

    Effect of structure upon the reactions of organic compounds. Benzene derivatives. J. Am. Chem. Soc. 59, 96–103 (1937).

  105. 105.

    et al. The nature of transport variations in molecular heterojunction electronics. Nano Lett. 9, 3406–3412 (2009).

  106. 106.

    et al. Chemically controlled conductivity: torsion-angle dependence in a single-molecule biphenyldithiol junction. Angew. Chem. Int. Ed. Engl. 48, 8886–8890 (2009).

  107. 107.

    et al. Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133, 184–187 (2011).

  108. 108.

    & Charge transport through molecular switches. J. Phys. Condens. Matter 22, 133001 (2010).

  109. 109.

    et al. Single-molecule electronics: from chemical design to functional devices. Chem. Soc. Rev. 43, 7378–7411 (2014).

  110. 110.

    et al. Bianthrone in a single-molecule junction: conductance switching with a bistable molecule facilitated by image charge effects. J. Phys. Chem. C 114, 20686–20695 (2010).

  111. 111.

    et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

  112. 112.

    et al. Light-controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett. 9, 76–80 (2009).

  113. 113.

    , Aragonè, , & Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett. 14, 7064–7070 (2014).

  114. 114.

    et al. Single-molecule sensing of environmental pH — an STM break junction and NEGF-DFT approach. Angew. Chem. Int. Ed. Engl. 53, 1098–1102 (2014).

  115. 115.

    et al. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J. Am. Chem. Soc. 135, 5974–5977 (2013).

  116. 116.

    , & Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

  117. 117.

    et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat. Nanotechnol. 7, 41–46 (2012).

  118. 118.

    , , & Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

  119. 119.

    & Phase coherent electronics: a molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).

  120. 120.

    , & Controlling quantum transport through a single molecule. Nano Lett. 6, 2422–2426 (2006).

  121. 121.

    , & Parallel electromagnetic molecular logic gate. J. Am. Chem. Soc. 127, 1648–1649 (2005).

  122. 122.

    et al. Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663–667 (2012).

  123. 123.

    et al. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 7, 305–309 (2012).

  124. 124.

    et al. Direct observation of large quantum interference effect in anthraquinone solid-state junctions. J. Am. Chem. Soc. 135, 10218–10221 (2013).

  125. 125.

    et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. Engl. 51, 3203–3206 (2012).

  126. 126.

    et al. Electrochemical control of single-molecule conductance by fermi-level tuning and conjugation switching. J. Am. Chem. Soc. 136, 17922–17925 (2014).

  127. 127.

    , , , & Exploring local currents in molecular junctions. Nat. Chem. 2, 223–228 (2010).

  128. 128.

    et al. Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J. Am. Chem. Soc. 130, 17301–17308 (2008).

  129. 129.

    & Cross conjugation. J. Chem. Educ. 45, 633–637 (1968).

  130. 130.

    et al. Evaluating atomic components in fluorene wires. Chem. Sci. 5, 1561–1564 (2014).

  131. 131.

    An orbital rule for electron transport in molecules. Acc. Chem. Res. 45, 1612–1621 (2012).

  132. 132.

    & Frontier orbital control of molecular conductance and its switching. Angew. Chem. Int. Ed. Engl. 53, 4093–4097 (2014).

  133. 133.

    & Note on the method of molecular orbitals. Math. Proc. Cambridge Philos. Soc. 36, 193–200 (1940).

  134. 134.

    , & The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).

  135. 135.

    & Conductance switching and many-valued logic in porphyrin assemblies. J. Phys. Chem. Lett. 4, 3039–3044 (2013).

  136. 136.

    , & Two-state conductance in single Zn porphyrin molecular junctions. Appl. Phys. Lett. 96, 243107 (2010).

  137. 137.

    , & Orbital views of the electron transport through polycyclic aromatic hydrocarbons with different molecular sizes and edge type structures. J. Phys. Chem. C 114, 9997–10003 (2010).

  138. 138.

    , , , & Electrical conductance of oligothiophene molecular wires. Nano Lett. 8, 1237–1240 (2008).

  139. 139.

    & Finding destructive interference features in molecular transport junctions. J. Chem. Phys. 141, 181103 (2014).

  140. 140.

    Tailoring molecular layers at metal surfaces. Nat. Chem. 2, 87–95 (2010).

  141. 141.

    , & Exploiting quantum interference in dye sensitized solar cells. ACS Nano 8, 409–418 (2014).

  142. 142.

    , , , & Harnessing quantum interference in molecular dielectric materials. ACS Nano 9, 6412–6418 (2015).

  143. 143.

    Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

  144. 144.

    , , & Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985).

  145. 145.

    et al. Electronic decay constant of carotenoid polyenes from single-molecule measurements. J. Am. Chem. Soc. 127, 1384–1385 (2005).

  146. 146.

    et al. From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s. ACS Nano 3, 3861–3868 (2009).

  147. 147.

    et al. Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 134, 5262–5275 (2012).

  148. 148.

    et al. Length-dependent conductance of oligothiophenes. J. Am. Chem. Soc. 136, 10486–10492 (2014).

  149. 149.

    et al. Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. J. Am. Chem. Soc. 132, 11658–11664 (2010).

Download references

Acknowledgements

T.A.S. is supported by an NSF Graduate Research Fellowship under grant no. 11-44155. The authors thank the NSF for support under grant no. CHE-1404922.

Author information

Affiliations

  1. Department of Chemistry, Columbia University.

    • Timothy A. Su
    • , Madhav Neupane
    • , Michael L. Steigerwald
    • , Latha Venkataraman
    •  & Colin Nuckolls
  2. Department of Physics and Applied Math, Columbia University, New York, New York 10027, USA.

    • Latha Venkataraman

Authors

  1. Search for Timothy A. Su in:

  2. Search for Madhav Neupane in:

  3. Search for Michael L. Steigerwald in:

  4. Search for Latha Venkataraman in:

  5. Search for Colin Nuckolls in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Michael L. Steigerwald or Latha Venkataraman or Colin Nuckolls.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2016.2

Further reading