Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

An Erratum to this article was published on 17 May 2016

Abstract

Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Key developments in PERS for material science.
Figure 2: First- and second-generation SERS hotspots for trace-molecule detection.
Figure 3: Third-generation hotspots for surface analysis.
Figure 4: Different measurement modes of Raman and PERS on hard and soft materials.
Figure 5: Selected applications of SERS and SHINERS in material systems.
Figure 6: Selected examples of TERS applications in material systems.

References

  1. Nalwa, H. S. Handbook of Surfaces and Interfaces of Materials VII–IX (Academic Press, 2001).

    Google Scholar 

  2. Politis, C., Meletis, E. I. & Schommers, W. Welcome to the Journal of Surfaces and Interfaces of Materials. J. Surf. Interfaces Mater. 1, 1–3 (2013).

    Article  Google Scholar 

  3. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). First report of surface-enhanced Raman spectra.

    CAS  Article  Google Scholar 

  4. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977). Demonstration that the anomalous enhancement in surface Raman spectra is due to a new effect: the SERS effect.

    CAS  Article  Google Scholar 

  5. Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    CAS  Article  Google Scholar 

  6. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Article  Google Scholar 

  7. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997). References 6 and 7 are the first two papers on single-molecule SERS.

    CAS  Article  Google Scholar 

  8. Ding, S. Y., Zhang, X. M., Ren, B. & Tian, Z. Q. in Encyclopedia of Analytical Chemistry (ed. Meyers, R. A. ) (Wiley, 2013).

    Google Scholar 

  9. Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978). Giant Raman intensity demonstrated from a roughened Ag electrode was shown to originate from the excitation of surface plasmons.

    CAS  Article  Google Scholar 

  10. Creighton, J. A., Blatchford, C. G. & Albrecht, M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2 75, 790–798 (1979). First experimental evidence that the SERS enhancement factor effect can be observed on Ag and Au colloids (nanoparticles).

    CAS  Article  Google Scholar 

  11. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    Article  Google Scholar 

  12. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).

    CAS  Article  Google Scholar 

  13. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

    CAS  Article  Google Scholar 

  14. Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochemistry 68, 942–949 (2000). References 11 to 14 are the first four papers reporting on TERS.

    CAS  Article  Google Scholar 

  15. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010). The first paper on the invention of SHINERS.

    CAS  Article  Google Scholar 

  16. Chase, D. B. & Parkinson, B. A. Surface-enhanced Raman spectroscopy in the near-infrared. Appl. Spectrosc. 42, 1186–1187 (1988).

    CAS  Article  Google Scholar 

  17. Ren, B. et al. Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc. 125, 9598–9599 (2003).

    CAS  Article  Google Scholar 

  18. Tian, Z. Q., Yang, Z. L., Ren, B. & Wu, D. Y. in Surface-Enhanced Raman Scattering (eds Kneipp, K., Moskovits, M. & Kneipp, H. ) 125–146 (Springer, 2006).

    Book  Google Scholar 

  19. Nie, S., Lipscomb, L. A. & Yu, N. T. Surface-enhanced hyper-Raman spectroscopy. Appl. Spectrosc. Rev. 26, 203–276 (1991).

    Article  Google Scholar 

  20. Liang, E. J., Weippert, A., Funk, J. M., Materny, A. & Kiefer, W. Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering. Chem. Phys. Lett. 227, 115–120 (1994).

    CAS  Article  Google Scholar 

  21. Frontiera, R. R., Henry, A. I., Gruenke, N. L. & Van Duyne, R. P. Surface-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2, 1199–1203 (2011).

    CAS  Article  Google Scholar 

  22. Wickramasinghe, H. K., Chaigneau, M., Yasukuni, R., Picardi, G. & Ossikovski, R. Billion-fold increase in tip-enhanced Raman signal. ACS Nano 8, 3421–3426 (2014).

    CAS  Article  Google Scholar 

  23. Aroca, R. F. Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys. 15, 5355–5363 (2013).

    CAS  Article  Google Scholar 

  24. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    CAS  Article  Google Scholar 

  25. Liao, P. F. et al. Surface-enhanced Raman scattering from microlithographic silver particle surfaces. Chem. Phys. Lett. 82, 355–359 (1981).

    CAS  Article  Google Scholar 

  26. Tian, Z. Q., Ren, B., Li, J. F. & Yang, Z. L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 3514–3534 (2007).

  27. Freeman, R. G. et al. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267, 1629–1632 (1995).

    CAS  Article  Google Scholar 

  28. Dick, L. A., McFarland, A. D., Haynes, C. L. & Van Duyne, R. P. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853–860 (2002).

    CAS  Article  Google Scholar 

  29. Greeneltch, N. G., Blaber, M. G., Henry, A. I., Schatz, G. C. & Van Duyne, R. P. Immobilized nanorod assemblies: fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates. Anal. Chem. 85, 2297–2303 (2013).

    CAS  Article  Google Scholar 

  30. Li, W., Camargo, P. H. C., Lu, X. & Xia, Y. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9, 485–490 (2009).

    CAS  Article  Google Scholar 

  31. Zhang, X. et al. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. 27, 1090–1096 (2015).

    CAS  Article  Google Scholar 

  32. McMahon, J. M. et al. Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J. Phys. Chem. C 113, 2731–2735 (2009).

    CAS  Article  Google Scholar 

  33. Wustholz, K. L. et al. Structure–activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 10903–10910 (2010).

    CAS  Article  Google Scholar 

  34. Shegai, T. et al. Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer. Proc. Natl Acad. Sci. USA 105, 16448–16453 (2008).

    CAS  Article  Google Scholar 

  35. Gallinet, B., Siegfried, T., Sigg, H., Nordlander, P. & Martin, O. J. F. Plasmonic radiance: probing structure at the Ångström scale with visible light. Nano Lett. 13, 497–503 (2013).

    CAS  Article  Google Scholar 

  36. Doering, W. E., Piotti, M. E., Natan, M. J. & Freeman, R. G. SERS as a foundation for nanoscale, optically detected biological labels. Adv. Mater. 19, 3100–3108 (2007).

    CAS  Article  Google Scholar 

  37. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    CAS  Article  Google Scholar 

  38. Tian, Z. Q. & Ren, B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 55, 197–229 (2004).

    CAS  Article  Google Scholar 

  39. Wu, D. Y., Li, J. F., Ren, B. & Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008).

    CAS  Article  Google Scholar 

  40. McAughtrie, S., Faulds, K. & Graham, D. Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment. J. Photochem. Photobiol. C 21, 40–53 (2014).

    CAS  Article  Google Scholar 

  41. Gao, P. & Weaver, M. J. Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes. J. Phys. Chem. 89, 5040–5046 (1985).

    CAS  Article  Google Scholar 

  42. Fleischmann, M., Tian, Z. Q. & Li, L. J. Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates. J. Electroanal. Chem. 217, 397–410 (1987).

    CAS  Article  Google Scholar 

  43. Aramaki, K., Kiuchi, T., Sumiyoshi, T. & Nishihara, H. Surface enhanced Raman scattering and impedance studies on the inhibition of copper corrosion in sulphate solutions by 5-substituted benzotriazoles. Corros. Sci. 32, 593–607 (1991).

    CAS  Article  Google Scholar 

  44. Zou, S. & Weaver, M. J. Surface-enhanced Raman scattering on uniform transition-metal films: toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? Anal. Chem. 70, 2387–2395 (1998).

    CAS  Article  Google Scholar 

  45. Pettinger, B., Schambach, P., Villagómez, C. J. & Scott, N. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu. Rev. Phys. Chem. 63, 379–399 (2012). An excellent review on TERS from its history and principles to applications.

    CAS  Article  Google Scholar 

  46. Schmid, T., Opilik, L., Blum, C. & Zenobi, R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. Engl. 52, 5940–5954 (2013).

    CAS  Article  Google Scholar 

  47. Anema, J. R., Li, J. F., Yang, Z. L., Ren, B. & Tian, Z. Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering. Annu. Rev. Anal. Chem. 4, 129–150 (2011).

    CAS  Article  Google Scholar 

  48. Li, X. et al. High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials. Energy Environ. Sci. 7, 306–310 (2014).

    CAS  Article  Google Scholar 

  49. Hy, S. et al. In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. J. Power Sources 256, 324–328 (2014).

    CAS  Article  Google Scholar 

  50. Hy, S., Felix, F., Rick, J., Su, W. N. & Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 136, 999–1007 (2014).

    CAS  Article  Google Scholar 

  51. Li, C. Y. et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 7648–7651 (2015).

    CAS  Article  Google Scholar 

  52. Stadler, J., Schmid, T. & Zenobi, R. Nanoscale chemical imaging of single-layer graphene. ACS Nano 5, 8442–8448 (2011).

    CAS  Article  Google Scholar 

  53. Chen, C., Hayazawa, N. & Kawata, S. A. 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014).

    Article  CAS  Google Scholar 

  54. Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    CAS  Article  Google Scholar 

  55. Chang, R. K. & Furtak, T. E. (eds) Surface Enhanced Raman Scattering (Plenum, 1982).

    Book  Google Scholar 

  56. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783 (1985).

    CAS  Article  Google Scholar 

  57. Otto, A., Mrozek, I., Grabhorn, H. & Akemann, W. Surface-enhanced Raman scattering. J. Phys.: Condens. Matter 4, 1143–1212 (1992).

    CAS  Google Scholar 

  58. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).

    CAS  Article  Google Scholar 

  59. Le Ru, E. C. & Etchegoin, P. G. Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 63, 65–87 (2012).

    CAS  Article  Google Scholar 

  60. Schlücker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. Engl. 53, 4756–4795 (2014).

    Article  CAS  Google Scholar 

  61. Aravind, P. K., Nitzan, A. & Metiu, H. The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres. Surf. Sci. 110, 189–204 (1981).

    CAS  Article  Google Scholar 

  62. Aravind, P. K. & Metiu, H. The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy. Surf. Sci. 124, 506–528 (1983). References 61 and 62 are the first two studies in which the electromagnetic coupling in a particle dimer system and in a particle-on-metal substrate system were reported.

    CAS  Article  Google Scholar 

  63. Shalaev, V. M. & Sarychev, A. K. Nonlinear optics of random metal–dielectric films. Phys. Rev. B 57, 13265–13288 (1998).

    CAS  Article  Google Scholar 

  64. Le Ru, E. C., Etchegoin, P. G. & Meyer, M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J. Chem. Phys. 125, 204701–204713 (2006).

    CAS  Article  Google Scholar 

  65. Kleinman, S. L., Frontiera, R. R., Henry, A. I., Dieringer, J. A. & Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013).

    CAS  Article  Google Scholar 

  66. McMahon, J. M., Li, S., Ausman, L. K. & Schatz, G. C. Modeling the effect of small gaps in surface-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 1627–1637 (2012).

    CAS  Article  Google Scholar 

  67. Moreau, A. et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012).

    CAS  Article  Google Scholar 

  68. Wei, H. & Xu, H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 5, 10794–10805 (2013).

    CAS  Article  Google Scholar 

  69. Shiohara, A., Wang, Y. & Liz-Marzán, L. M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol. C 21, 2–25 (2014).

    CAS  Article  Google Scholar 

  70. Ding, S. Y., Yi, J., Li, J. F. & Tian, Z. Q. A theoretical and experimental approach to shell-isolated nanoparticle-enhanced Raman spectroscopy of single-crystal electrodes. Surf. Sci. 631, 73–80 (2015).

    CAS  Article  Google Scholar 

  71. Jiang, Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964–9972 (2003).

    CAS  Article  Google Scholar 

  72. Sonntag, M. D. et al. Molecular plasmonics for nanoscale spectroscopy. Chem. Soc. Rev. 43, 1230–1247 (2014).

    CAS  Article  Google Scholar 

  73. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004).

    CAS  Article  Google Scholar 

  74. Cecchini, M. P., Turek, V. A., Paget, J., Kornyshev, A. A. & Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 12, 165–171 (2013).

    CAS  Article  Google Scholar 

  75. Banholzer, M. J., Millstone, J. E., Qin, L. & Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 885–897 (2008).

    CAS  Article  Google Scholar 

  76. Fang, Y., Seong, N. H. & Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008). First experimental evidence for the contribution to the overall Raman signal from various sites on SERS substrates.

    CAS  Article  Google Scholar 

  77. Yang, L., Li, P., Liu, H., Tang, X. & Liu, J. A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state. Chem. Soc. Rev. 44, 2837–2848 (2015).

    CAS  Article  Google Scholar 

  78. Camden, J. P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).

    CAS  Article  Google Scholar 

  79. Chen, G. et al. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 131, 4218–4219 (2009).

    CAS  Article  Google Scholar 

  80. Rycenga, M. et al. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew. Chem. Int. Ed. Engl. 50, 5473–5477 (2011).

    CAS  Article  Google Scholar 

  81. Lim, D. K., Jeon, K. S., Kim, H. M., Nam, J. M. & Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9, 60–67 (2010).

    CAS  Article  Google Scholar 

  82. Thacker, V. V. et al. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 5, 3448 (2014).

    Article  CAS  Google Scholar 

  83. Kleinman, S. L. et al. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment. J. Am. Chem. Soc. 133, 4115–4122 (2011).

    CAS  Article  Google Scholar 

  84. Chen, S. Y. & Lazarides, A. A. Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure. J. Phys. Chem. C 113, 12167–12175 (2009).

    CAS  Article  Google Scholar 

  85. Gandra, N., Abbas, A., Tian, L. & Singamaneni, S. Plasmonic planet–satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett. 12, 2645–2651 (2012).

    CAS  Article  Google Scholar 

  86. Wang, H., Levin, C. S. & Halas, N. J. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J. Am. Chem. Soc. 127, 14992–14993 (2005).

    CAS  Article  Google Scholar 

  87. Peng, B. et al. Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 5993–6000 (2013).

    CAS  Article  Google Scholar 

  88. Tian, Z. Q. et al. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. Faraday Discuss. 132, 159–170 (2006).

    CAS  Article  Google Scholar 

  89. Bartlett, P. N., Baumberg, J. J., Coyle, S. & Abdelsalam, M. E. Optical properties of nanostructured metal films. Faraday Discuss. 125, 117–132 (2004). Demonstration of a new SERS substrate with nanovoid arrays.

    CAS  Article  Google Scholar 

  90. Abdelsalam, M. E. et al. Electrochemical SERS at a structured gold surface. Electrochem. Commun. 7, 740–744 (2005).

    CAS  Article  Google Scholar 

  91. Tian, C., Deng, Y., Zhao, D. & Fang, J. Plasmonic silver supercrystals with ultrasmall nanogaps for ultrasensitive SERS-based molecule detection. Adv. Opt. Mater. 3, 404–411 (2015).

    CAS  Article  Google Scholar 

  92. Brown, R. J. C. & Milton, M. J. T. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313–1326 (2008).

    CAS  Article  Google Scholar 

  93. Huang, F. M. et al. Dressing plasmons in particle-in-cavity architectures. Nano Lett. 11, 1221–1226 (2011).

    CAS  Article  Google Scholar 

  94. Chen, S. Y. et al. Gold nanoparticles on polarizable surfaces as Raman scattering antennas. ACS Nano 4, 6535–6546 (2010).

    CAS  Article  Google Scholar 

  95. Li, A., Isaacs, S., Abdulhalim, I. & Li, S. Ultrahigh enhancement of electromagnetic fields by exciting localized with extended surface plasmons. J. Phys. Chem. C 119, 19382–19389 (2015).

    CAS  Article  Google Scholar 

  96. Tian, J. H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006).

    CAS  Article  Google Scholar 

  97. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    CAS  Article  Google Scholar 

  98. Krafft, C. & Popp, J. The many facets of Raman spectroscopy for biomedical analysis. Anal. Bioanal. Chem. 407, 699–717 (2015).

    CAS  Article  Google Scholar 

  99. Mahajan, S., Richardson, J., Brown, T. & Bartlett, P. N. SERS-melting: a new method for discriminating mutations in DNA sequences. J. Am. Chem. Soc. 130, 15589–15601 (2008).

    CAS  Article  Google Scholar 

  100. Xu, L. J. et al. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. J. Am. Chem. Soc. 137, 5149–5154 (2015).

    CAS  Article  Google Scholar 

  101. Sherry, L. J. et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5, 2034–2038 (2005).

    CAS  Article  Google Scholar 

  102. Zhang, S., Bao, K., Halas, N. J., Xu, H. & Nordlander, P. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 11, 1657–1663 (2011).

    CAS  Article  Google Scholar 

  103. Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012).

    Article  CAS  Google Scholar 

  104. Van Duyne, R. P. & Haushalter, J. P. Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces: tris(bipyridine)ruthenium(ii) adsorbed on silver-modified n-GaAs(100). J. Phys. Chem. 87, 2999–3003 (1983).

    CAS  Article  Google Scholar 

  105. Mubeen, S. et al. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 12, 2088–2094 (2012).

    CAS  Article  Google Scholar 

  106. Mauser, N. & Hartschuh, A. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev. 43, 1248–1262 (2014).

    CAS  Article  Google Scholar 

  107. Kumar, N., Mignuzzi, S., Su, W. & Roy, D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech. Instrum. 2, 9 (2015).

    Article  Google Scholar 

  108. Graham, D. The next generation of advanced spectroscopy: surface enhanced Raman scattering from metal nanoparticles. Angew. Chem. Int. Ed. Engl. 49, 9325–9327 (2010).

    CAS  Article  Google Scholar 

  109. Ge, J. J. et al. Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains. J. Am. Chem. Soc. 123, 5768–5776 (2001).

    CAS  Article  Google Scholar 

  110. Taz, H. et al. In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of CdS thin films. J. Phys. Chem. C 119, 5033–5039 (2015).

    CAS  Article  Google Scholar 

  111. Li, L., Steiner, U. & Mahajan, S. Single nanoparticle SERS probes of ion intercalation in metal-oxide electrodes. Nano Lett. 14, 495–498 (2014).

    CAS  Article  Google Scholar 

  112. Berweger, S. et al. Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol. 4, 496–499 (2009).

    CAS  Article  Google Scholar 

  113. Rodriguez, R. D. et al. Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles. Nanoscale 7, 9545–9551 (2015).

    CAS  Article  Google Scholar 

  114. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013). Resolution of TERS shown to be increased to the sub-nanometre under ultrahigh vacuum and at low temperature.

    CAS  Article  Google Scholar 

  115. Barbry, M. et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nano-optics. Nano Lett. 15, 3410–3419 (2015).

    CAS  Article  Google Scholar 

  116. Duan, S. et al. Theoretical modeling of plasmon-enhanced Raman images of a single molecule with subnanometer resolution. J. Am. Chem. Soc. 137, 9515–9518 (2015).

    CAS  Article  Google Scholar 

  117. Zhang, C., Chen, B. Q. & Li, Z. Y. Optical origin of subnanometer resolution in tip-enhanced Raman mapping. J. Phys. Chem. C 119, 11858–11871 (2015).

    CAS  Article  Google Scholar 

  118. Liu, Z. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2, 305 (2011).

    Article  CAS  Google Scholar 

  119. Deckert-Gaudig, T., Kämmer, E. & Deckert, V. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering. J. Biophotonics 5, 215–219 (2012).

    CAS  Article  Google Scholar 

  120. Zeng, Z. C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).

    CAS  Article  Google Scholar 

  121. Honesty, N. R. & Gewirth, A. A. Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly). J. Raman Spectrosc. 43, 46–50 (2012).

    CAS  Article  Google Scholar 

  122. Wang, H., Jiang, X., Lee, S. T. & He, Y. Silicon nanohybrid-based surface-enhanced Raman scattering sensors. Small 10, 4455–4468 (2014).

    CAS  Article  Google Scholar 

  123. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    CAS  Article  Google Scholar 

  124. Murray, W. A. & Barnes, W. L. Plasmonic materials. Adv. Mater. 19, 3771–3782 (2007).

    CAS  Article  Google Scholar 

  125. Blaber, M. G., Arnold, M. D. & Ford, M. J. Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material. J. Phys.: Condens. Matter 21, 144211 (2009).

    CAS  Google Scholar 

  126. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    CAS  Article  Google Scholar 

  127. Luther, J. M., Jain, P. K., Ewers, T. & Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011).

    CAS  Article  Google Scholar 

  128. McMahon, J. M., Schatz, G. C. & Gray, S. K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 15, 5415–5423 (2013).

    CAS  Article  Google Scholar 

  129. Zhong, Y., Malagari, S. D., Hamilton, T. & Wasserman, D. Review of mid-infrared plasmonic materials. J. Nanophotonics 9, 093791 (2015).

    Article  CAS  Google Scholar 

  130. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

    CAS  Article  Google Scholar 

  131. Hanham, S. M. & Maier, S. A. in Active Plasmonics and Tuneable Plasmonic Metamaterials (eds Zayats, A. V. & Maier, S. ) 243–260 (Wiley, 2013).

    Book  Google Scholar 

  132. Zhang, H., Jin, M. & Xia, Y. Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew. Chem. Int. Ed. Engl. 51, 7656–7673 (2012).

    CAS  Article  Google Scholar 

  133. Zhang, Q., Large, N. & Wang, H. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. ACS Appl. Mater. Interfaces 6, 17255–17267 (2014).

    CAS  Article  Google Scholar 

  134. Zhang, Q., Lee, Y. H., Phang, I. Y., Lee, C. K. & Ling, X. Y. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles. Small 10, 2703–2711 (2014).

    CAS  Article  Google Scholar 

  135. Ahmed, A. & Gordon, R. Single molecule directivity enhanced Raman scattering using nanoantennas. Nano Lett. 12, 2625–2630 (2012).

    CAS  Article  Google Scholar 

  136. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    CAS  Article  Google Scholar 

  137. Chu, Y., Wang, D., Zhu, W. & Crozier, K. B. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model. Opt. Express 19, 14919–14928 (2011).

    CAS  Article  Google Scholar 

  138. Ye, J. et al. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. 12, 1660–1667 (2012).

    CAS  Article  Google Scholar 

  139. Zhang, Y. et al. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 5, 4424 (2014). Single-molecule CARS performed on well-designed single nanoquadrumer discs.

    CAS  Article  Google Scholar 

  140. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    CAS  Article  Google Scholar 

  141. Lin, X. D. et al. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 43, 40–45 (2012).

    CAS  Article  Google Scholar 

  142. Li, J. F., Anema, J. R., Wandlowski, T. & Tian, Z. Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 44, 8399–8409 (2015).

    CAS  Article  Google Scholar 

  143. Bian, X. et al. Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci. Rep. 4, 6093 (2014).

    CAS  Article  Google Scholar 

  144. Li, C. Y. et al. “Smart” Ag nanostructures for plasmon-enhanced spectroscopies. J. Am. Chem. Soc. 137, 13784–13787 (2015).

    CAS  Article  Google Scholar 

  145. Wu, C. et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2012).

    CAS  Article  Google Scholar 

  146. Stanley, R. Plasmonics in the mid-infrared. Nat. Photonics 6, 409–411 (2012).

    CAS  Article  Google Scholar 

  147. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 2890 (2013).

    Article  CAS  Google Scholar 

  148. Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    CAS  Article  Google Scholar 

  149. Ostovar pour, S. et al. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat. Chem. 7, 591–596 (2015).

    CAS  Article  Google Scholar 

  150. Baldelli, S., Eppler, A. S., Anderson, E., Shen, Y. R. & Somorjai, G. A. Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays. J. Chem. Phys. 113, 5432–5438 (2000).

    CAS  Article  Google Scholar 

  151. Franck, V. & Abderrahmane, T. Sum-frequency generation spectroscopy of interfaces. Rep. Prog. Phys. 68, 1095–1127 (2005).

    Article  CAS  Google Scholar 

  152. Liu, W. T. & Shen, Y. R. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. Proc. Natl Acad. Sci. USA 111, 1293–1297 (2014).

    CAS  Article  Google Scholar 

  153. Hua, X. et al. Nature of surface-enhanced coherent Raman scattering. Phys. Rev. A 89, 043841 (2014).

    Article  CAS  Google Scholar 

  154. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

    Book  Google Scholar 

  155. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    CAS  Article  Google Scholar 

  156. Maier, S. A., Brongersma, M. L., Meltzer, P. G. K. S., Requicha, A. A. G. & Atwater, H. A. Plasmonics: a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    CAS  Article  Google Scholar 

  157. Brongersma, M. L. & Shalaev, V. M. The case for plasmonics. Science 328, 440–441 (2010).

    CAS  Article  Google Scholar 

  158. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    CAS  Article  Google Scholar 

  159. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  Article  Google Scholar 

  160. Meng, L., Yam, C., Zhang, Y., Wang, R. & Chen, G. Multiscale modeling of plasmon-enhanced power conversion efficiency in nanostructured solar cells. J. Phys. Chem. Lett. 6, 4410–4416 (2015).

    CAS  Article  Google Scholar 

  161. Yamamoto, Y. S., Ozaki, Y. & Itoh, T. Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J. Photochem. Photobio. C 21, 81–104 (2014).

    CAS  Article  Google Scholar 

  162. Kerker, M., Wang, D. S. & Chew, H. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl. Opt. 19, 4159–4174 (1980).

    CAS  Article  Google Scholar 

  163. Le Ru, E. C. & Etchegoin, P. G. Rigorous justification of the|E |4 enhancement factor in surface enhanced Raman spectroscopy. Chem. Phys. Lett. 423, 63–66 (2006).

    CAS  Article  Google Scholar 

  164. Yoshida, K.i. et al. Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys. Rev. B 81, 115406 (2010).

    Article  CAS  Google Scholar 

  165. Le Ru, E. C. & Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009). An excellent book on SERS, hotspots and localized surface plasmon resonance.

    Google Scholar 

  166. Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357 (1999). Demonstration of the importance of nanogaps in single-molecule SERS by electromagnetic computations and experiments.

    CAS  Article  Google Scholar 

  167. Michaels, A. M., Nirmal, M. & Brus, L. E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939 (1999).

    CAS  Article  Google Scholar 

  168. Etchegoin, P. G. & Le Ru, E. C. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).

    CAS  Article  Google Scholar 

  169. Dieringer, J. A. et al. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J. Am. Chem. Soc. 131, 849–854 (2008).

    Article  CAS  Google Scholar 

  170. McMahon, J. M., Gray, S. K. & Schatz, G. C. Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Phys. Rev. B 83, 115428 (2011).

    Article  CAS  Google Scholar 

  171. Zhu, W. & Crozier, K. B. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun. 5, 5228 (2014).

    CAS  Article  Google Scholar 

  172. Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009).

    CAS  Article  Google Scholar 

  173. Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    CAS  Article  Google Scholar 

  174. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    CAS  Article  Google Scholar 

  175. Palik, E. D. Handbook of Optical Constants of Solids Vol. 1 (Academic, 1998).

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (91427304, 21533006, 21321062 and 21522508) and Ministry of Science and Technology (2015CB932300). The authors thank X-Y. Cao for the English editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Qun Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, SY., Yi, J., Li, JF. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1, 16021 (2016). https://doi.org/10.1038/natrevmats.2016.21

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.21

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing