Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties

Article metrics

  • An Erratum to this article was published on 16 February 2016


Solution-processed hybrid organic–inorganic perovskites (HOIPs) exhibit long electronic carrier diffusion lengths, high optical absorption coefficients and impressive photovoltaic device performance. Recent results allow us to compare and contrast HOIP charge-transport characteristics to those of III–V semiconductors — benchmarks of photovoltaic (and light-emitting and laser diode) performance. In this Review, we summarize what is known and unknown about charge transport in HOIPs, with particular emphasis on their advantages as photovoltaic materials. Experimental and theoretical findings are integrated into one narrative, in which we highlight the fundamental questions that need to be addressed regarding the charge-transport properties of these materials and suggest future research directions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Timeline of research into the optoelectronic properties of HOIPs and important discoveries in the development of HOIP solar cells.
Figure 2: Electronic structure and closely related physical properties of HOIPs.
Figure 3: Charge-transport parameters of various HOIPs that are critical to device performance.
Figure 4: Trap states and densities in HOIPs.
Figure 5: Effects of processing on charge-transport parameters.
Figure 6: Hysteresis and its possible microscopic origins.


  1. 1

    Wells, A. F. Structural Inorganic Chemistry5th edn (Oxford Univ. Press, 1984).

  2. 2

    Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015).

  3. 3

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

  4. 4

    Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

  5. 5

    Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

  6. 6

    Weber, D. CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforsch. B 33, 1443–1445 (1978).

  7. 7

    Topsoe, H. Oversigt. K. Danske Vidensk. Selsk. Forh. 8, 247 (1882).

  8. 8

    Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

  9. 9

    Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic-inorganic halides containing < 110 >-oriented perovskite sheets. Science 267, 1473–1476 (1995).

  10. 10

    Mitzi, D. B., Feild, C. A., Schlesinger, Z. & Laibowitz, R. B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3 . J. Solid State Chem. 114, 159–163 (1995).

  11. 11

    Mitzi, D. B. Synthesis, structure, and properties of organic–inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 (1999). A comprehensive review of early materials chemistry for HOIP compounds.

  12. 12

    Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

  13. 13

    Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

  14. 14

    Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

  15. 15

    Salim, T. et al. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J. Mater. Chem. A 3, 8943–8969 (2015).

  16. 16

    Zhao, Y. X. & Zhu, K. Solution chemistry engineering toward high-efficiency perovskite solar cells. J. Phys. Chem. Lett. 5, 4175–4186 (2014).

  17. 17

    Brittman, S., Adhyaksa, G. W. P. & Garnett, E. C. The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Commun. 5, 7–26 (2015).

  18. 18

    Song, T. B. et al. Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3, 9032–9050 (2015).

  19. 19

    Stranks, S. D., Nayak, P. K., Zhang, W., Stergiopoulos, T. & Snaith, H. J. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. Engl. 54, 3240–3248 (2015).

  20. 20

    Zhou, Z. et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. Engl. 54, 9705–9709 (2015).

  21. 21

    Nie, W. Y. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

  22. 22

    Zhou, Y. Y. et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A 3, 8178–8184 (2015).

  23. 23

    Yan, K. Y. et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).

  24. 24

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

  25. 25

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

  26. 26

    Even, J. et al. Solid-state physics perspective on hybrid perovskite semiconductors. J. Phys. Chem. C 119, 10161–10177 (2015).

  27. 27

    Gratzel, M. The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).

  28. 28

    Berry, J. et al. Hybrid organic-inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27, 5102–5112 (2015).

  29. 29

    Sum, T. C., Chen, S., Xing, G. C., Liu, X. F. & Wu, B. Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters. Nanotechnology 26, 312009 (2015).

  30. 30

    De Angelis, F. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. Acc. Chem. Res. 47, 3349–3360 (2014).

  31. 31

    Du, M. H. Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).

  32. 32

    Nazeeruddin, M. K. et al. Perovskite photovoltaics. MRS Bull. 40, 635–685 (2015).

  33. 33

    Quarti, C., Mosconi, E. & De Angelis, F. Structural and electronic properties of organohalide hybrid perovskites from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 17, 9394–9409 (2015).

  34. 34

    Yin, W. J., Yang, J. H., Kang, J., Yan, Y. F. & Wei, S. H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).

  35. 35

    Bisquert, J. The swift surge of perovskite photovoltaics. J. Phys. Chem. Lett. 4, 2597–2598 (2013).

  36. 36

    Christians, J. A., Manser, J. S. & Kamat, P. V. Multifaceted excited state of CH3NH3PbI3. Charge separation, recombination, and trapping. J. Phys. Chem. Lett. 6, 2086–2095 (2015).

  37. 37

    Miyasaka, T. Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices. Chem. Lett. 44, 720–729 (2015).

  38. 38

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

  39. 39

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

  40. 40

    Yablonovitch, E., Miller, O. D. & Kurtz, S. R. in Photovoltaic Specialists Conference (PVSC) 38th IEEE, 1556–1559 (IEEE, Austin, Texas, 2012).

  41. 41

    Jenny, D. A., Loferski, J. J. & Rappaport, P. Photovoltaic effect in GaAs p–n junctions and solar energy conversion. Phys. Rev. 101, 1208–1209 (1956).

  42. 42

    Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

  43. 43

    Park, N. G. Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65–72 (2015).

  44. 44

    Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

  45. 45

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

  46. 46

    Liu, M. Z., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). The first paper on planar HOIP solar cells, demonstrating conclusively that good charge transport is possible within CH3NH3PbI3 itself, something that could be deduced from reference 45.

  47. 47

    Brivio, F., Butler, K. T., Walsh, A. & van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).

  48. 48

    Aulbur, W. G., Jonsson, L. & Wilkins, J. W. Quasiparticle calculations in solids. Solid State Phys. 54, 1–218 (1999).

  49. 49

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

  50. 50

    Kirchartz, T. & Rau, U. in Advanced Characterization Techniques for Thin Film Solar Cells Ch. 1 (eds Abou-Ras, D., Kirchartz, T. & Rau, U. ) 3–32 (Wiley, 2011).

  51. 51

    Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).

  52. 52

    Menendez-Proupin, E., Palacios, P., Wahnon, P. & Conesa, J. C. Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite. Phys. Rev. B 90, 045207 (2014).

  53. 53

    Sadhanala, A. et al. Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).

  54. 54

    D'Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

  55. 55

    Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3PbI3 . Solid State Commun. 127, 619–623 (2003).

  56. 56

    Hirasawa, M., Ishihara, T. & Goto, T. Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4− octahedra. J. Phys. Soc. Jpn 63, 3870–3879 (1994).

  57. 57

    Saba, M. et al. Correlated electron-hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

  58. 58

    Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A. & Kanemitsu, Y. Photoelectronic responses in solution-processed perovskite CH3NH3PbI3 solar cells studied by photoluminescence and photoabsorption spectroscopy. IEEE J. Photovolt. 5, 401–405 (2015).

  59. 59

    Collavini, S., Volker, S. F. & Delgado, J. L. Understanding the outstanding power conversion efficiency of perovskite-based solar cells. Angew. Chem. Int. Ed. Engl. 54, 9757–9759 (2015).

  60. 60

    Lin, Q. Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photonics 9, 106–112 (2015).

  61. 61

    Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 . Phys. B 201, 427–430 (1994).

  62. 62

    Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

  63. 63

    Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–594 (2015). Providing the most fundamental measurements of exciton binding energy and effective mass in CH3NH3PbI3 yet, including in the device-relevant tetragonal phase, this study supports earlier reports (see main text) that the exciton binding energy is small enough to result in a negligible population of excitons at room temperature and that the excitonic reduced mass is indeed quite low (0.1m0).

  64. 64

    Even, J., Pedesseau, L., Jancu, J. M. & Katan, C. DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi RRL 8, 31–35 (2014).

  65. 65

    Zhu, X., Su, H. B., Marcus, R. A. & Michel-Beyerle, M. E. Computed and experimental absorption spectra of the perovskite CH3NH3PbI3 . J. Phys. Chem. Lett. 5, 3061–3065 (2014).

  66. 66

    Ahmed, T. et al. Optical properties of organometallic perovskite: an ab initio study using relativistic GW correction and Bethe–Salpeter equation. Europhys. Lett. 108, 67015 (2014); erratum 112, 29901(2015).

  67. 67

    Chang, Y. H., Park, C. H. & Matsuishi, K. First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I). J. Korean Phys. Soc. 44, 889–893 (2004). Appearing half a decade before the first HOIP solar cells, this computational study predicted that charge carriers in CH3NH3PbX3 materials would have small effective masses (0.1m0).

  68. 68

    Umebayashi, T., Asai, K., Kondo, T. & Nakao, A. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003).

  69. 69

    Brivio, F., Walker, A. B. & Walsh, A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013).

  70. 70

    Lang, L., Yang, J. H., Liu, H. R., Xiang, H. J. & Gong, X. G. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys. Lett. A 378, 290–293 (2014).

  71. 71

    Filippetti, A. & Mattoni, A. Hybrid perovskites for photovoltaics: insights from first principles. Phys. Rev. B 89, 125203 (2014).

  72. 72

    Yin, W. J., Shi, T. T. & Yan, Y. F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

  73. 73

    Kim, J., Lee, S. C., Lee, S. H. & Hong, K. H. Importance of orbital interactions in determining electronic band structures of organo-lead iodide. J. Phys. Chem. C 119, 4627–4634 (2015).

  74. 74

    Zheng, F., Takenaka, H., Wang, F. G., Koocher, N. Z. & Rappe, A. M. First-principles calculation of the bulk photovoltaic effect in CH3NH3PbI3 and CH3NH3PbI3−x Clx . J. Phys. Chem. Lett. 6, 31–37 (2015).

  75. 75

    Even, J., Pedesseau, L. & Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).

  76. 76

    Even, J., Pedesseau, L., Jancu, J. M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).

  77. 77

    Giorgi, G., Fujisawa, J. I., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013).

  78. 78

    Wei, S. H. & Zunger, A. Electronic and structural anomalies in lead chalcogenides. Phys. Rev. B 55, 13605–13610 (1997).

  79. 79

    Borriello, I., Cantele, G. & Ninno, D. Ab initio investigation of hybrid organic–inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008).

  80. 80

    Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

  81. 81

    Wang, Y. et al. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3 . Phys. Chem. Chem. Phys. 16, 1424–1429 (2014).

  82. 82

    Sourisseau, S. et al. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic-inorganic interface. Chem. Mater. 19, 600–607 (2007).

  83. 83

    Mosconi, E., Amat, A., Nazeeruddin, M. K., Gratzel, M. & De Angelis, F. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013).

  84. 84

    Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).

  85. 85

    Egger, D. A. & Kronik, L. Role of dispersive interactions in determining structural properties of organic–inorganic halide perovskites: insights from first-principles calculations. J. Phys. Chem. Lett. 5, 2728–2733 (2014).

  86. 86

    Motta, C. et al. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 . Nat. Commun. 6, 7 (2015).

  87. 87

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007).

  88. 88

    Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014).

  89. 89

    Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

  90. 90

    Savenije, T. J. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5, 2189–2194 (2014).

  91. 91

    Brenner, T. M. et al. Are mobilities in hybrid organic–inorganic halide perovskites actually ‘high’? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

  92. 92

    Brandt, R. E., Stevanovic, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

  93. 93

    Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). Appearing simultaneously with reference 94, these papers were the first to demonstrate long carrier lifetimes, and by combining these with the diffusion coefficients that were also measured, extracted the long diffusion lengths of the electronic charge carriers in polycrystalline CH3NH3PbI3 films.

  94. 94

    Xing, G. C. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

  95. 95

    Sheng, R. et al. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C 119, 3545–3549 (2015).

  96. 96

    Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V. & Huang, L. B. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6, 7471 (2015).

  97. 97

    Dong, Q. F. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

  98. 98

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). Appearing shortly before reference 97, this paper demonstrated growth of single-crystal CH3NH3PbX3 (X = I, Br), critical to understanding the fundamental properties of these materials, and showing that long carrier lifetimes and modest mobilities are properties of high-quality crystals as well as thin films.

  99. 99

    Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

  100. 100

    Zhang, M. et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 50, 11727–11730 (2014).

  101. 101

    Nelson, R. J. & Sobers, R. G. Minority carrier lifetime and internal quantum efficiency of surface-free GaAs. J. Appl. Phys. 49, 6103–6108 (1978).

  102. 102

    Edri, E. et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014).

  103. 103

    Kedem, N. et al. Light-induced increase of electron diffusion length in a p–n junction type CH3NH3PbBr3 perovskite solar cell. J. Phys. Chem. Lett. 6, 2469–2476 (2015).

  104. 104

    Buin, A. et al. Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014).

  105. 105

    Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

  106. 106

    Karakus, M. et al.Phonon–electron scattering limits free charge mobility in methylammonium lead iodide perovskites.J. Phys. Chem. Lett. 6, 4991–4996(2015).

  107. 107

    Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A. & Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015).

  108. 108

    Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015).

  109. 109

    Guo, Y. et al. in MRS Fall Meeting NN14.05 (Boston, 2015).

  110. 110

    Zhu, X.-Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761(2015).

  111. 111

    Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

  112. 112

    Butler, K. T., Frost, J. M. & Walsh, A. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 . Mater. Horizons 2, 228–231 (2015).

  113. 113

    Kulbak, M., Cahen, D. & Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015).

  114. 114

    Ogomi, Y. et al. CH3NH3SnxPb1−xI3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

  115. 115

    Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014).

  116. 116

    Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

  117. 117

    Tvingstedt, K. et al. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014).

  118. 118

    Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, http://dx.doi.org/10.1002/aenm.201400812 (2015).

  119. 119

    Liu, Y. et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015).

  120. 120

    Duan, H. S. et al. The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17, 112–116 (2015).

  121. 121

    Samiee, M. et al. Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105, 153502 (2014).

  122. 122

    Baumann, A. et al. Identification of trap states in perovskite solar cells. J. Phys. Chem. Lett. 6, 2350–2354 (2015).

  123. 123

    Xing, G. C. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

  124. 124

    Hutter, E. M., Eperon, G. E., Stranks, S. D. & Savenije, T. J. Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states. J. Phys. Chem. Lett. 6, 3082–3090 (2015).

  125. 125

    Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8, 737–743 (2014).

  126. 126

    Barnea-Nehoshtan, L., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. J. Phys. Chem. Lett. 5, 2408–2413 (2014).

  127. 127

    Kim, J., Lee, S. H., Lee, J. H. & Hong, K. H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

  128. 128

    Agiorgousis, M. L., Sun, Y. Y., Zeng, H. & Zhang, S. B. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3Pbl3 . J. Am. Chem. Soc. 136, 14570–14575 (2014).

  129. 129

    Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

  130. 130

    Cahen, D., Abecassis, D. & Soltz, D. Doping of CuInSe2 crystals: evidence for influence of thermal defects. Chem. Mater. 1, 202–207 (1989).

  131. 131

    Dharmadasa, I. M., Chaure, N. B., Tolan, G. J. & Samantilleke, A. P. Development of p+, p, i, n, and n+-type CuInGaSe2 layers for applications in graded bandgap multilayer thin-film solar cells. J. Electrochem. Soc. 154, H466–H471 (2007).

  132. 132

    Walsh, A., Scanlon, D. O., Chen, S. Y., Gong, X. G. & Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. Engl. 54, 1791–1794 (2015).

  133. 133

    Wang, Q. et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3 . Appl. Phys. Lett. 105, 163508 (2014).

  134. 134

    Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).

  135. 135

    Miller, E. M. et al. Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 22122–22130 (2014).

  136. 136

    Ren, Z. et al. Thermal assisted oxygen annealing for high efficiency planar CH3NH3PbI3 perovskite solar cells. Sci. Rep. 4, 6752 (2014).

  137. 137

    Abate, A. et al. Lithium salts as ‘redox active’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 2572–2579 (2013).

  138. 138

    Cahen, D. & Noufi, R. Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance. Appl. Phys. Lett. 54, 558–560 (1989).

  139. 139

    Nayak, P. K., Rosenberg, R., Barnea-Nehoshtan, L. & Cahen, D. O2 and organic semiconductors: electronic effects. Org. Electron. 14, 966–972 (2013).

  140. 140

    Rau, U. et al. Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices. J. Appl. Phys. 86, 497–505 (1999).

  141. 141

    Huang, J., Shao, Y. & Dong, Q. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J. Phys. Chem. Lett. 6, 3218–3227 (2015).

  142. 142

    Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).

  143. 143

    Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

  144. 144

    deQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

  145. 145

    Yang, B. et al. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J. Am. Chem. Soc. 137, 9210–9213 (2015).

  146. 146

    Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

  147. 147

    Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

  148. 148

    Shao, Y. H., Xiao, Z. G., Bi, C., Yuan, Y. B. & Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).

  149. 149

    Xu, J. et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 6, 7081 (2015).

  150. 150

    Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

  151. 151

    Cao, D. Y. H. et al. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Mater. 2, 091101 (2014).

  152. 152

    Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

  153. 153

    Tidhar, Y. et al. Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256 (2014).

  154. 154

    Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015).

  155. 155

    Heo, J. H., Song, D. H. & Im, S. H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179–8183 (2014).

  156. 156

    Xiao, Z. G. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

  157. 157

    Egger, D. A., Edri, E., Cahen, D. & Hodes, G. Perovskite solar cells: do we know what we do not know? J. Phys. Chem. Lett. 6, 279–282 (2015).

  158. 158

    Riess, I. in CRC Handbook of Solid State Electrochemistry (eds Gellings, P. J. & Bouwmeester, H. J. M. ) 223–268 (CRC, 1997).

  159. 159

    Meier, S. B. et al. Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today 17, 217–223 (2014).

  160. 160

    Xiao, Z. G. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

  161. 161

    Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, http://dx.doi.org/10.1002/aenm.201500615 (2015).

  162. 162

    Gottesman, R. et al. Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J. Phys. Chem. Lett. 6, 2332–2338 (2015).

  163. 163

    Gottesman, R. et al. Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662–2669 (2014).

  164. 164

    Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

  165. 165

    Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

  166. 166

    Tress, W. et al. Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

  167. 167

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

  168. 168

    Unger, E. L. et al. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

  169. 169

    Beilsten-Edmands, J., Eperon, G. E., Johnson, R. D., Snaith, H. J. & Radaelli, P. G. Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 5 (2015).

  170. 170

    Guillemoles, J. F., Rau, U., Kronik, L., Schock, H. W. & Cahen, D. Cu(In,Ga)Se2 solar cells: device stability based on chemical flexibility. Adv. Mater. 11, 957–961 (1999).

  171. 171

    Mizusaki, J., Arai, K. & Fueki, K. Ionic conduction of the perovskite-type halides. Solid State Ionics 11, 203–211 (1983).

  172. 172

    Kuku, T. A. Structure and ionic conductivity of CuCdCl3 . Solid State Ionics 25, 105–108 (1987).

  173. 173

    Kuku, T. A., Akande, A. R., Erharhine, P. O., Chiodelli, G. & Adiguzel, O. Structure and ionic transport properties of some Cu2PbBr4, Cu2SNI4 compounds. Solid State Ionics 44, 99–105 (1990).

  174. 174

    Kuku, T. A. & Salau, A. M. Electrical conductivity of CuSNI3, CuPbI3 and KPbI3 . Solid State Ionics 25, 1–7 (1987).

  175. 175

    Dualeh, A. et al. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014).

  176. 176

    Yang, T. Y., Gregori, G., Pellet, N., Gratzel, M. & Maier, J. The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. Engl. 54, 7905–7910 (2015).

  177. 177

    Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

  178. 178

    Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

  179. 179

    Egger, D. A., Kronik, L. & Rappe, A. M. Theory of hydrogen migration in organic–inorganic halide perovskites. Angew. Chem. Int. Ed. Engl. 54, 12437–12441 (2015).

  180. 180

    Islam, M. S., Davies, R. A. & Gales, J. D. Proton migration and defect interactions in the CaZrO3 orthorhombic perovskite: a quantum mechanical study. Chem. Mat. 13, 2049–2055 (2001).

  181. 181

    Bergmann, V. W. et al. Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5, 5001 (2014).

  182. 182

    Guerrero, A., Juarez-Perez, E. J., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Electrical field profile and doping in planar lead halide perovskite solar cells. Appl. Phys. Lett. 105, 133902 (2014).

  183. 183

    Dymshits, A., Henning, A., Segev, G., Rosenwaks, Y. & Etgar, L. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 5, 8704 (2015).

  184. 184

    Frost, J. M., Butler, K. T. & Walsh, A. Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2, 081506 (2014).

  185. 185

    Zhang, W. & Xiong, R. G. Ferroelectric metal–organic frameworks. Chem. Rev. 112, 1163–1195 (2012).

  186. 186

    Grinberg, I. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

  187. 187

    Butler, K. T., Frost, J. M. & Walsh, A. Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838–848 (2015).

  188. 188

    Chen, B. et al. Ferroelectric solar cells based on inorganic–organic hybrid perovskites. J. Mater. Chem. A 3, 7699–7705 (2015).

  189. 189

    Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).

  190. 190

    Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. Lett. 6, 693–699 (2015).

  191. 191

    Stroppa, A., Quarti, C., De Angelis, F. & Picozzi, S. Ferroelectric polarization of CH3NH3PbI3: a detailed study based on density functional theory and symmetry mode analysis. J. Phys. Chem. Lett. 6, 2223–2231 (2015).

  192. 192

    Coll, M. et al. Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015).

  193. 193

    Fan, Z. et al. Ferroelectricity of CH3NH3Pbl3 perovskite. J. Phys. Chem. Lett. 6, 1155–1161 (2015).

  194. 194

    Kutes, Y. et al. Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014).

  195. 195

    Yamada, Y. et al. Dynamic optical properties of CH3NH3PbI3 single crystals as revealed by one- and two-photon excited photoluminescence measurements. J. Am. Chem. Soc. 137, 10456–10459 (2015).

  196. 196

    Wasylishen, R. E., Knop, O. & Macdonald, J. B. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985).

  197. 197

    Leguy, A. M. A. et al. The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015).

  198. 198

    Bakulin, A. A. et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015).

  199. 199

    Ehre, D., Rakita, Y., Hodes, G., Cahen, D. & Lubomirsky, I. Direct Experimental Evidence for Absence of Polarity in CH3NH3PbBr3 Crystals (MRS Fall Rump Session, 2015).

  200. 200

    Wu, B. et al. Charge accumulation and hysteresis in perovskite-based solar cells: an electro-optical analysis. Adv. Energy Mater. 5, http://dx.doi.org/10.1002/aenm.201500829 (2015).

  201. 201

    Jena, A. K. et al. The interface between FTO and the TiO2 compact layer can be one of the origins to hysteresis in planar heterojunction perovskite solar cells. ACS Appl. Mater. Interfaces 7, 9817–9823 (2015).

  202. 202

    Nazeeruddin, M. K. & Snaith, H. Methylammonium lead triiodide perovskite solar cells: a new paradigm in photovoltaics. MRS Bull. 40, 641–645 (2015).

  203. 203

    O’Regan, B. C. et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during JV hysteresis. J. Am. Chem. Soc. 137, 5087–5099 (2015).

  204. 204

    Miyano, K., Yanagida, M., Tripathi, N. & Shirai, Y. Simple characterization of electronic processes in perovskite photovoltaic cells. Appl. Phys. Lett. 106, 093903 (2015).

  205. 205

    Hoke, E. T. et al. Charge Recombination and Transport in Hybrid Perovskite Solar Cells (MRS Fall Conference, 2013).

  206. 206

    Unger, E. L. et al.Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014).

Download references


The authors thank M. Bonn, E. Canovas, V. Podzorov, O. Yaffe and S. Tretiak, for sharing preprints of their results. They thank I. Balberg, A. Kahn, L. Leiserowitz, I. Lubomirsky, O. M. Stafsudd and X. Y. Zhu for illuminating discussions. The authors' work is or was supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Israel Ministry of Science, Israel National Nano-Initiative, a research grant from Dana and Yossie Hollander and the Austrian Science Fund (FWF):J3608−N20 (to D.A.E.). T.M.B. thanks the WIS for an Alternative Sustainable Energy Research Initiative (AERI) postdoctoral fellowship. D.C. holds the Sylvia and Rowland Schaefer Chair in Energy Research.

Author information

Correspondence to Leeor Kronik or Gary Hodes or David Cahen.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brenner, T., Egger, D., Kronik, L. et al. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater 1, 15007 (2016) doi:10.1038/natrevmats.2015.7

Download citation

Further reading