Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Semiconducting materials for photoelectrochemical energy conversion

An Erratum to this article was published on 16 February 2016

Abstract

To achieve a sustainable society with an energy mix primarily based on solar energy, we need methods of storing energy from sunlight as chemical fuels. Photoelectrochemical (PEC) devices offer the promise of solar fuel production through artificial photosynthesis. Although the idea of a carbon-neutral energy economy powered by such ‘artificial leaves’ is intriguing, viable PEC energy conversion on a global scale requires the development of devices that are highly efficient, stable and simple in design. In this Review, recently developed semiconductor materials for the direct conversion of light into fuels are scrutinized with respect to their atomic constitution, electronic structure and potential for practical performance as photoelectrodes in PEC cells. The processes of light absorption, charge separation and transport, and suitable energetics for energy conversion in PEC devices are emphasized. Both the advantageous and unfavourable aspects of multinary oxides, oxynitrides, chalcogenides, classic semiconductors and carbon-based semiconductors are critically considered on the basis of their experimentally demonstrated performance and predicted properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photoelectrochemical cell basics.
Figure 2: Bandgap structure and selected crystal structures of oxide and oxynitride semiconductors for PEC applications.
Figure 3: Promising semiconductor chalcogenides for photoelectrochemical energy conversion.
Figure 4: Emerging carbon-based semiconductors for photoelectrochemical devices.

References

  1. 1

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Acar, C. & Dincer, I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int. J. Hydrogen Energy 39, 1–12 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Nowotny, J. et al. Sustainable practices: solar hydrogen fuel and education program on sustainable energy systems. Int. J. Hydrogen Energy 39, 4151–4157 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Dodds, P. E. in Compendium of Hydrogen Energy (eds Subramani, V., Basile, A. & Veziroglu, T. N. ) 63–79 (Woodhead, 2015).

    Book  Google Scholar 

  5. 5

    Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Nozik, A. J. Photochemical diodes. Appl. Phys. Lett. 30, 567–569 (1977).

    CAS  Article  Google Scholar 

  8. 8

    Seger, B. et al. 2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. Energy Environ. Sci. 7, 2397–2413 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Newman, J. Scaling with Ohm's law; wired versus wireless photoelectrochemical cells. J. Electrochem. Soc. 160, F309–F311 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Nozik, A. J. Photoelectrochemistry: applications to solar energy conversion. Annu. Rev. Phys. Chem. 29, 189–222 (1978).

    CAS  Article  Google Scholar 

  11. 11

    Gattrell, M., Gupta, N. & Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006).

    CAS  Article  Google Scholar 

  12. 12

    McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985).

    CAS  Article  Google Scholar 

  14. 14

    Prévot, M. S. & Sivula, K. Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 117, 17879–17893 (2013).

    Article  CAS  Google Scholar 

  15. 15

    Seitz, L. C. et al. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 7, 1372–1385 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013). This is a comprehensive techno-economic analysis of PEC devices, which gives some indication of the cost and performance of the device needed for cost competiveness.

    CAS  Article  Google Scholar 

  17. 17

    Kapilashrami, M., Zhang, Y., Liu, Y.-S., Hagfeldt, A. & Guo, J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 9662–9707 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Janáky, C., Rajeshwar, K., de Tacconi, N. R., Chanmanee, W. & Huda, M. N. Tungsten-based oxide semiconductors for solar hydrogen generation. Catal. Today 199, 53–64 (2013).

    Article  CAS  Google Scholar 

  19. 19

    Khaselev, O. & Turner, J. A. A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Cox, C. R., Lee, J. Z., Nocera, D. G. & Buonassisi, T. Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl Acad. Sci. USA 111, 14057–14061 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Fujii, K. et al. Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int. J. Hydrogen Energy 38, 14424–14432 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Nielander, A. C., Shaner, M. R., Papadantonakis, K. M., Francis, S. A. & Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 8, 16–25 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Miller, E. L., Rocheleau, R. E. & Deng, X. M. Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production. Int. J. Hydrogen Energy 28, 615–623 (2003).

    CAS  Article  Google Scholar 

  26. 26

    McKone, J. R., Lewis, N. S. & Gray, H. B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407–414 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Hernandez-Pagan, E. A. et al. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environ. Sci. 5, 7582–7589 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Boddy, P. J. Oxygen evolution on semiconducting TiO2 . J. Electrochem. Soc. 115, 199–203 (1968).

    CAS  Article  Google Scholar 

  29. 29

    Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). This is a seminal report of PEC water oxidation by a semiconductor.

    CAS  Article  Google Scholar 

  30. 30

    Henrich, V. & Cox, P. The Surface Science of Metal Oxides (Cambridge Univ. Press, 1996).

    Google Scholar 

  31. 31

    Kay, A., Cesar, I. & Gratzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Kim, J. Y. et al. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681 (2013).

    Article  Google Scholar 

  33. 33

    Bassi, P. S., Gurudayal, Wong, L. H. & Barber, J. Iron based photoanodes for solar fuel production. Phys. Chem. Chem. Phys. 16, 11834–11842 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Woodhouse, M. & Parkinson, B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38, 197–210 (2009).

    CAS  Article  Google Scholar 

  35. 35

    McLeod, J. A. et al. Band-gap engineering in TiO2-based ternary oxides. Phys. Rev. B 85, 195201 (2012).

    Article  CAS  Google Scholar 

  36. 36

    Thimsen, E., Biswas, S., Lo, C. S. & Biswas, P. Predicting the band structure of mixed transition metal oxides: theory and experiment. J. Phys. Chem. C 113, 2014–2021 (2009).

    Article  CAS  Google Scholar 

  37. 37

    Castelli, I. E. et al. Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 5, 5814–5819 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report (ISE, 2015).

  39. 39

    Walsh, A., Yan, Y., Huda, M. N., Al-Jassim, M. M. & Wei, S.-H. Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem. Mater. 21, 547–551 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Cooper, J. K. et al. Electronic structure of monoclinic BiVO4 . Chem. Mater. 26, 5365–5373 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Zhao, Z., Li, Z. & Zou, Z. Electronic structure and optical properties of monoclinic clinobisvanite BiVO4 . Phys. Chem. Chem. Phys. 13, 4746–4753 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Cooper, J. K. et al. Indirect bandgap and optical properties of monoclinic bismuth vanadate. J. Phys. Chem. C 119, 2969–2974 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Kudo, A., Ueda, K., Kato, H. & Mikami, I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 53, 229–230 (1998).

    CAS  Article  Google Scholar 

  44. 44

    Sayama, K. et al. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 110, 11352–11360 (2006).

    CAS  Article  Google Scholar 

  45. 45

    Liang, Y., Tsubota, T., Mooij, L. P. A. & van de Krol, R. Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J. Phys. Chem. C 115, 17594–17598 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Li, M., Zhao, L. & Guo, L. Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis. Int. J. Hydrogen Energy 35, 7127–7133 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Ye, H., Lee, J., Jang, J. S. & Bard, A. J. Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties. J. Phys. Chem. C 114, 13322–13328 (2010).

    CAS  Article  Google Scholar 

  48. 48

    Zhong, D. K., Choi, S. & Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by ‘Co-Pi’ catalyst-modified W:BiVO4 . J. Am. Chem. Soc. 133, 18370–18377 (2011).

    CAS  Article  Google Scholar 

  49. 49

    Ye, H., Park, H. S. & Bard, A. J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 115, 12464–12470 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Abdi, F. F. & van de Krol, R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116, 9398–9404 (2012).

    CAS  Article  Google Scholar 

  51. 51

    Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    CAS  Article  Google Scholar 

  52. 52

    Shi, X. et al. Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device. Nano Energy 13, 182–191 (2015).

    CAS  Article  Google Scholar 

  53. 53

    Hamann, T. W. Splitting water with rust: hematite photoelectrochemistry. Dalton Trans. 41, 7830–7834 (2012).

    CAS  Article  Google Scholar 

  54. 54

    Barroso, M. et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640–15645 (2012).

    CAS  Article  Google Scholar 

  55. 55

    Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with ‘Co–Pi’-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693–16700 (2012).

    CAS  Article  Google Scholar 

  56. 56

    Ma, Y., Pendlebury, S. R., Reynal, A., Le Formal, F. & Durrant, J. R. Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation. Chem. Sci. 5, 2964–2973 (2014).

    CAS  Article  Google Scholar 

  57. 57

    Abdi, F. F., Firet, N. & van de Krol, R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. ChemCatChem 5, 490–496 (2013).

    CAS  Article  Google Scholar 

  58. 58

    Abdi, F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate–silicon tandem photoelectrode. Nat. Commun. 4, 2195 (2013). This study reports a new and successful strategy to extract carriers from small-polaron conducting materials.

    Article  CAS  Google Scholar 

  59. 59

    Su, J., Guo, L., Bao, N. & Grimes, C. A. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928–1933 (2011).

    CAS  Article  Google Scholar 

  60. 60

    Abdi, F. F., Savenije, T. J., May, M. M., Dam, B. & van de Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4, 2752–2757 (2013).

    CAS  Article  Google Scholar 

  61. 61

    Rettie, A. J. E. et al. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 135, 11389–11396 (2013).

    CAS  Article  Google Scholar 

  62. 62

    Shi, X. et al. Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 4775 (2014).

    CAS  Article  Google Scholar 

  63. 63

    Pihosh, Y. et al. Photocatalytic generation of hydrogen by core–shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 5, 11141 (2015).

    Article  Google Scholar 

  64. 64

    Rettie, A. J. E. et al. Anisotropic small-polaron hopping in W:BiVO4 single crystals. Appl. Phys. Lett. 106, 022106 (2015).

    Article  CAS  Google Scholar 

  65. 65

    Kweon, K. E., Hwang, G. S., Kim, J., Kim, S. & Kim, S. Electron small polarons and their transport in bismuth vanadate: a first principles study. Phys. Chem. Chem. Phys. 17, 256–260 (2015).

    CAS  Article  Google Scholar 

  66. 66

    Han, L. et al. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. ChemSusChem 7, 2832–2838 (2014).

    CAS  Article  Google Scholar 

  67. 67

    Benko, F. A., MacLaurin, C. L. & Koffyberg, F. P. CuWO4 and Cu3WO6 as anodes for the photoelectrolysis of water. Mater. Res. Bull. 17, 133–136 (1982).

    CAS  Article  Google Scholar 

  68. 68

    Yourey, J. E. & Bartlett, B. M. Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J. Mater. Chem. 21, 7651–7660 (2011).

    CAS  Article  Google Scholar 

  69. 69

    Lalić, M. V., Popović, Z. S. & Vukajlović, F. R. Ab initio study of electronic, magnetic and optical properties of CuWO4 tungstate. Comput. Mater. Sci. 50, 1179–1186 (2011).

    Article  CAS  Google Scholar 

  70. 70

    Hill, J. C., Ping, Y., Galli, G. A. & Choi, K.-S. Synthesis, photoelectrochemical properties, and first principles study of n-type CuW1−xMoxO4 electrodes showing enhanced visible light absorption. Energy Environ. Sci. 6, 2440–2446 (2013).

    CAS  Article  Google Scholar 

  71. 71

    Pyper, K. J., Yourey, J. E. & Bartlett, B. M. Reactivity of CuWO4 in photoelectrochemical water oxidation is dictated by a midgap electronic state. J. Phys. Chem. C 117, 24726–24732 (2013).

    CAS  Article  Google Scholar 

  72. 72

    Yourey, J. E., Pyper, K. J., Kurtz, J. B. & Bartlett, B. M. Chemical stability of CuWO4 for photoelectrochemical water oxidation. J. Phys. Chem. C 117, 8708–8718 (2013).

    CAS  Article  Google Scholar 

  73. 73

    Valenti, M., Dolat, D., Biskos, G., Schmidt-Ott, A. & Smith, W. A. Enhancement of the photoelectrochemical performance of CuWO4 thin films for solar water splitting by plasmonic nanoparticle functionalization. J. Phys. Chem. C 119, 2096–2104 (2015).

    CAS  Article  Google Scholar 

  74. 74

    Bohra, D. & Smith, W. A. Improved charge separation via Fe-doping of copper tungstate photoanodes. Phys. Chem. Chem. Phys. 17, 9857–9866 (2015).

    CAS  Article  Google Scholar 

  75. 75

    Yao, J., Li, X., Li, Y. & Le, S. Density functional theory investigations on the structure and electronic properties of normal spinel ZnFe2O4 . Integr. Ferroelectr. 145, 17–23 (2013).

    CAS  Article  Google Scholar 

  76. 76

    McDonald, K. J. & Choi, K.-S. Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem. Mater. 23, 4863–4869 (2011).

    CAS  Article  Google Scholar 

  77. 77

    Guo, Y., Fu, Y., Liu, Y. & Shen, S. Photoelectrochemical activity of ZnFe2O4 modified α-Fe2O3 nanorod array films. RSC Adv. 4, 36967–36972 (2014).

    CAS  Article  Google Scholar 

  78. 78

    Boumaza, S., Boudjemaa, A., Bouguelia, A., Bouarab, R. & Trari, M. Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3 . Appl. Energy 87, 2230–2236 (2010).

    CAS  Article  Google Scholar 

  79. 79

    Miao, C. et al. Micro-nano-structured Fe2O3:Ti/ZnFe2O4 heterojunction films for water oxidation. ACS Appl. Mater. Interfaces 4, 4428–4433 (2012).

    CAS  Article  Google Scholar 

  80. 80

    Kim, J. H. et al. Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing. Adv. Energy Mater. 5, 1401933 (2015).

    Article  CAS  Google Scholar 

  81. 81

    Matsumoto, Y., Omae, M., Sugiyama, K. & Sato, E. New photocathode materials for hydrogen evolution: calcium iron oxide (CaFe2O4) and strontium iron oxide (Sr7Fe10O22). J. Phys. Chem. 91, 577–581 (1987).

    CAS  Article  Google Scholar 

  82. 82

    Ida, S. et al. Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J. Am. Chem. Soc. 132, 17343–17345 (2010).

    CAS  Article  Google Scholar 

  83. 83

    Sekizawa, K., Nonaka, T., Arai, T. & Morikawa, T. Structural improvement of CaFe2O4 by metal doping toward enhanced cathodic photocurrent. ACS Appl. Mater. Interfaces 6, 10969–10973 (2014).

    CAS  Article  Google Scholar 

  84. 84

    Ahmed, M. G. et al. Enhanced photoelectrochemical water oxidation on nanostructured hematite photoanodes via p-CaFe2O4/n-Fe2O3 heterojunction formation. J. Phys. Chem. C 119, 5864–5871 (2015).

    CAS  Article  Google Scholar 

  85. 85

    Kim, E. S. et al. Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. ACS Appl. Mater. Interfaces 6, 17762–17769 (2014).

    CAS  Article  Google Scholar 

  86. 86

    Kim, E. S. et al. Fabrication of CaFe2O4/TaON hetero-junction photoanode for photoelectrochemical water oxidation. J. Am. Chem. Soc. 135, 5375–5383 (2013).

    CAS  Article  Google Scholar 

  87. 87

    Cao, J. et al. Photoelectrochemical properties of nanomultiple CaFe2O4/ZnFe2O4 pn junction photoelectrodes. Langmuir 29, 3116–3124 (2013).

    CAS  Article  Google Scholar 

  88. 88

    Paracchino, A., Laporte, V., Sivula, K., Grätzel, M. & Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011).

    CAS  Article  Google Scholar 

  89. 89

    Berglund, S. P., Lee, H. C., Nunez, P. D., Bard, A. J. & Mullins, C. B. Screening of transition and post-transition metals to incorporate into copper oxide and copper bismuth oxide for photoelectrochemical hydrogen evolution. Phys. Chem. Chem. Phys. 15, 4554–4565 (2013).

    CAS  Article  Google Scholar 

  90. 90

    Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H. & Sayama, K. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 9, 574–581 (2007).

    CAS  Article  Google Scholar 

  91. 91

    Patil, R., Kelkar, S., Naphade, R. & Ogale, S. Low temperature grown CuBi2O4 with flower morphology and its composite with CuO nanosheets for photoelectrochemical water splitting. J. Mater. Chem. A 2, 3661–3668 (2014).

    CAS  Article  Google Scholar 

  92. 92

    Nakabayashi, Y., Nishikawa, M. & Nosaka, Y. Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production. Electrochim. Acta 125, 191–198 (2014).

    CAS  Article  Google Scholar 

  93. 93

    Park, H. S., Lee, C.-Y. & Reisner, E. Photoelectrochemical reduction of aqueous protons with a CuO|CuBi2O4 heterojunction under visible light irradiation. Phys. Chem. Chem. Phys. 16, 22462–22465 (2014).

    CAS  Article  Google Scholar 

  94. 94

    Joshi, U. A., Palasyuk, A. M. & Maggard, P. A. Photoelectrochemical investigation and electronic structure of a p-type CuNbO3 photocathode. J. Phys. Chem. C 115, 13534–13539 (2011).

    CAS  Article  Google Scholar 

  95. 95

    Joshi, U. A. & Maggard, P. A. CuNb3O8: a p-type semiconducting metal oxide photoelectrode. J. Phys. Chem. Lett. 3, 1577–1581 (2012).

    CAS  Article  Google Scholar 

  96. 96

    Read, C. G., Park, Y. & Choi, K.-S. Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J. Phys. Chem. Lett. 3, 1872–1876 (2012).

    CAS  Article  Google Scholar 

  97. 97

    Prévot, M. S., Guijarro, N. & Sivula, K. Enhancing the performance of a robust sol–gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. ChemSusChem 8, 1359–1367 (2015). This study provides insight into the limitations of and routes to improving a promising p-type oxide photocathode through the development and optimization of a simple solution-based deposition procedure.

    Article  CAS  Google Scholar 

  98. 98

    Gu, J. et al. p-Type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J. Am. Chem. Soc. 136, 830–833 (2013).

    Article  CAS  Google Scholar 

  99. 99

    Gu, J. et al. Mg-doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. J. Phys. Chem. C 117, 12415–12422 (2013).

    CAS  Article  Google Scholar 

  100. 100

    Kang, U. et al. Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ. Sci. 8, 2638–2643 (2015).

    CAS  Article  Google Scholar 

  101. 101

    Zhang, P., Zhang, J. & Gong, J. Tantalum-based semiconductors for solar water splitting. Chem. Soc. Rev. 43, 4395–4422 (2014).

    CAS  Article  Google Scholar 

  102. 102

    Leroy, C. M. et al. TaOxNy sputtered photoanodes for solar water splitting. Energy Procedia 22, 119–126 (2012).

    CAS  Article  Google Scholar 

  103. 103

    Dabirian, A. & van de Krol, R. High-temperature ammonolysis of thin film Ta2O5 photoanodes: evolution of structural, optical, and photoelectrochemical properties. Chem. Mater. 27, 708–715 (2015).

    CAS  Article  Google Scholar 

  104. 104

    Suzuki, A. et al. High-mobility electron conduction in oxynitride: anatase TaON. Chem. Mater. 26, 976–981 (2014).

    CAS  Article  Google Scholar 

  105. 105

    Higashi, M., Domen, K. & Abe, R. Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J. Am. Chem. Soc. 134, 6968–6971 (2012). This study describes promising oxynitride materials shown to have surprising stability towards direct water photo-oxidation.

    CAS  Article  Google Scholar 

  106. 106

    Abe, R., Higashi, M. & Domen, K. Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 132, 11828–11829 (2010).

    CAS  Article  Google Scholar 

  107. 107

    Hou, J., Cheng, H., Takeda, O. & Zhu, H. Unique 3D heterojunction photoanode design to harness charge transfer for efficient and stable photoelectrochemical water splitting. Energy Environ. Sci. 8, 1348–1357 (2015).

    CAS  Article  Google Scholar 

  108. 108

    Kim, H.-i., Monllor-Satoca, D., Kim, W. & Choi, W. N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes. Energy Environ. Sci. 8, 247–257 (2015).

    CAS  Article  Google Scholar 

  109. 109

    Nishimura, N. et al. Effect of TiCl4 treatment on the photoelectrochemical properties of LaTiO2N electrodes for water splitting under visible light. Thin Solid Films 518, 5855–5859 (2010).

    CAS  Article  Google Scholar 

  110. 110

    Minegishi, T., Nishimura, N., Kubota, J. & Domen, K. Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem. Sci. 4, 1120–1124 (2013).

    CAS  Article  Google Scholar 

  111. 111

    Feng, J. et al. Highly photo-responsive LaTiO2N photoanodes by improvement of charge carrier transport among film particles. Adv. Funct. Mater. 24, 3535–3542 (2014).

    CAS  Article  Google Scholar 

  112. 112

    Leroy, C. M. et al. LaTiO2N/In2O3 photoanodes with improved performance for solar water splitting. Chem. Commun. 48, 820–822 (2012).

    CAS  Article  Google Scholar 

  113. 113

    Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R. & Domen, K. SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J. Am. Chem. Soc. 133, 12334–12337 (2011).

    CAS  Article  Google Scholar 

  114. 114

    Ueda, K. et al. Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. J. Am. Chem. Soc. 137, 2227–2230 (2015).

    CAS  Article  Google Scholar 

  115. 115

    Zhao, J. et al. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition–sulfurization method. Angew. Chem. Int. Ed. Engl. 53, 11808–11812 (2014).

    CAS  Article  Google Scholar 

  116. 116

    Septina, W. et al. Photosplitting of water from wide-gap Cu(In,Ga)S2 thin films modified with a CdS layer and Pt nanoparticles for a high-onset-potential photocathode. J. Phys. Chem. C 119, 8576–8583 (2015).

    CAS  Article  Google Scholar 

  117. 117

    Zhang, L., Minegishi, T., Kubota, J. & Domen, K. Hydrogen evolution from water using AgxCu1− xGaSe2 photocathodes under visible light. Phys. Chem. Chem. Phys. 16, 6167–6174 (2014).

    CAS  Article  Google Scholar 

  118. 118

    Zhang, L. et al. Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe2 photocathodes modified with CdS and CuGa3Se5 . Chem. Sci. 6, 894–901 (2015).

    CAS  Article  Google Scholar 

  119. 119

    Moriya, M. et al. Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. J. Am. Chem. Soc. 135, 3733–3735 (2013).

    CAS  Article  Google Scholar 

  120. 120

    Kumagai, H., Minegishi, T., Moriya, Y., Kubota, J. & Domen, K. Photoelectrochemical hydrogen evolution from water using copper gallium selenide electrodes prepared by a particle transfer method. J. Phys. Chem. C 118, 16386–16392 (2014).

    CAS  Article  Google Scholar 

  121. 121

    Djellal, L., Omeiri, S., Bouguelia, A. & Trari, M. Photoelectrochemical hydrogen-evolution over p-type chalcopyrite CuInSe2 . J. Alloys Compd. 476, 584–589 (2009).

    CAS  Article  Google Scholar 

  122. 122

    Kumagai, H. et al. Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In, Ga)Se2 photocathodes. J. Mater. Chem. A 3, 8300–8307 (2015).

    CAS  Article  Google Scholar 

  123. 123

    Yokoyama, D. et al. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl. Phys. Express 3, 101202 (2010).

    Article  CAS  Google Scholar 

  124. 124

    Rovelli, L., Tilley, S. D. & Sivula, K. Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. ACS Appl. Mater. Interfaces 5, 8018–8024 (2013).

    CAS  Article  Google Scholar 

  125. 125

    Neumann, B., Bogdanoff, P. & Tributsch, H. TiO2-protected photoelectrochemical tandem Cu(In,Ga)Se2 thin film membrane for light-induced water splitting and hydrogen evolution. J. Phys. Chem. C 113, 20980–20989 (2009).

    CAS  Article  Google Scholar 

  126. 126

    Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    CAS  Article  Google Scholar 

  127. 127

    Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).

    CAS  Article  Google Scholar 

  128. 128

    Tenne, R. & Wold, A. Passivation of recombination centers in n-WSe2 yields high efficiency (>14%) photoelectrochemical cell. Appl. Phys. Lett. 47, 707–709 (1985).

    CAS  Article  Google Scholar 

  129. 129

    Bourezg, R., Couturier, G., Salardenne, J., Doumerc, J. P. & Lévy, F. Interface of n-type WSe2 photoanodes in aqueous solution. II. Photoelectrochemical properties. Phys. Rev. B 46, 15411–15415 (1992).

    CAS  Article  Google Scholar 

  130. 130

    McKone, J. R., Pieterick, A. P., Gray, H. B. & Lewis, N. S. Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. J. Am. Chem. Soc. 135, 223–231 (2012). This study reports benchmark performance and stability for a promising class of layered semiconductors.

    Article  CAS  Google Scholar 

  131. 131

    Yu, X., Prévot, M. S., Guijarro, N. & Sivula, K. Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun. 6, 7596 (2015).

    Article  Google Scholar 

  132. 132

    Seger, B. et al. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. Int. Ed. Engl. 51, 9128–9131 (2012).

    CAS  Article  Google Scholar 

  133. 133

    Chen, Y. W. et al. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539–544 (2011).

    CAS  Article  Google Scholar 

  134. 134

    Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    CAS  Article  Google Scholar 

  135. 135

    Lin, Y. et al. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 13, 5615–5618 (2013).

    CAS  Article  Google Scholar 

  136. 136

    Liu, C., Sun, J., Tang, J. & Yang, P. Zn-doped p-type gallium phosphide nanowire photocathodes from a surfactant-free solution synthesis. Nano Lett. 12, 5407–5411 (2012).

    CAS  Article  Google Scholar 

  137. 137

    Malizia, M., Seger, B., Chorkendorff, I. & Vesborg, P. C. K. Formation of a p–n heterojunction on GaP photocathodes for H2 production providing an open-circuit voltage of 710 mV. J. Mater. Chem. A 2, 6847–6853 (2014).

    CAS  Article  Google Scholar 

  138. 138

    Bansal, A. & Turner, J. A. Suppression of band edge migration at the p-GaInP2/H2O interface under illumination via catalysis. J. Phys. Chem. B 104, 6591–6598 (2000).

    CAS  Article  Google Scholar 

  139. 139

    MacLeod, B. A. et al. Phosphonic acid modification of GaInP2 photocathodes toward unbiased photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 7, 11346–11350 (2015).

    CAS  Article  Google Scholar 

  140. 140

    Hettick, M. et al. Nonepitaxial thin-film InP for scalable and efficient photocathodes. J. Phys. Chem. Lett. 6, 2177–2182 (2015).

    CAS  Article  Google Scholar 

  141. 141

    Lee, M. H. et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed. Engl. 51, 10760–10764 (2012).

    CAS  Article  Google Scholar 

  142. 142

    Barton, E. E., Rampulla, D. M. & Bocarsly, A. B. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008).

    CAS  Article  Google Scholar 

  143. 143

    May, M. M., Lewerenz, H.-J., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015). The current record solar-to-hydrogen conversion efficiency of 14% at standard conditions for a PEC cell is presented in this paper.

    CAS  Article  Google Scholar 

  144. 144

    Yanagida, S., Kabumoto, A., Mizumoto, K., Pac, C. & Yoshino, K. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J. Chem. Soc. Chem. Commun. 474–475 (1985).

  145. 145

    Abe, T. et al. Molecular hydrogen evolution by organic p/n bilayer film of phthalocyanine/fullerene in the entire visible-light energy region. J. Phys. Chem. C 115, 7701–7705 (2011).

    CAS  Article  Google Scholar 

  146. 146

    Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    CAS  Article  Google Scholar 

  147. 147

    Dong, G., Zhang, Y., Pan, Q. & Qiu, J. A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014).

    CAS  Article  Google Scholar 

  148. 148

    Sprick, R. S. et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 137, 3265–3270 (2015).

    CAS  Article  Google Scholar 

  149. 149

    Zhang, J. et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. Engl. 49, 441–444 (2010).

    CAS  Article  Google Scholar 

  150. 150

    Zhang, J., Zhang, M., Sun, R.-Q. & Wang, X. A. Facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. Engl. 51, 10145–10149 (2012).

    CAS  Article  Google Scholar 

  151. 151

    Yang, F. et al. Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes. J. Mater. Chem. A 1, 6407–6415 (2013).

    CAS  Google Scholar 

  152. 152

    Youngblood, W. J. et al. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131, 926–927 (2009).

    CAS  Article  Google Scholar 

  153. 153

    Swierk, J. R. et al. Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proc. Natl Acad. Sci. USA 112, 1681–1686 (2015). This is a report of a system of all-organic dyes that shows suitability for the water oxidation reaction, which opened up investigations into a new class of photoanode material.

    CAS  Article  Google Scholar 

  154. 154

    Kirner, J. T., Stracke, J. J., Gregg, B. A. & Finke, R. G. Visible-light-assisted photoelectrochemical water oxidation by thin films of a phosphonate-functionalized perylene diimide plus CoOx cocatalyst. ACS Appl. Mater. Interfaces 6, 13367–13377 (2014).

    CAS  Article  Google Scholar 

  155. 155

    Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).

    CAS  Article  Google Scholar 

  156. 156

    Guijarro, N., Prévot, M. S. & Sivula, K. Surface modification of semiconductor photoelectrodes. Phys. Chem. Chem. Phys. 17, 15655–15674 (2015).

    CAS  Article  Google Scholar 

  157. 157

    Le Formal, F. et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737–743 (2011).

    CAS  Article  Google Scholar 

  158. 158

    Kim, W. et al. Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy Environ. Sci. 6, 3732–3739 (2013).

    CAS  Article  Google Scholar 

  159. 159

    Jang, J.-W. et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 6, 7447 (2015).

    Article  Google Scholar 

  160. 160

    Cao, D., Wang, Z., Nasori, Wen, L., Mi, Y. & Lei, Y. Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO3 photoelectrodes. Angew. Chem. Int. Ed. Engl. 53, 11027–11031 (2014).

    CAS  Article  Google Scholar 

  161. 161

    Haussener, S. et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5, 9922–9935 (2012).

    CAS  Article  Google Scholar 

  162. 162

    Walczak, K. et al. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. ChemSusChem 8, 544–551 (2015).

    CAS  Article  Google Scholar 

  163. 163

    Chen, Z. B. et al. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010).

    Article  CAS  Google Scholar 

  164. 164

    Gelderman, K., Lee, L. & Donne, S. W. Flat-band potential of a semiconductor: using the Mott–Schottky equation. J. Chem. Educ. 84, 685 (2007).

    CAS  Article  Google Scholar 

  165. 165

    Song, H. et al. Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. J. Mater. Chem. A 3, 8353–8360 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kevin Sivula.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sivula, K., van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 1, 15010 (2016). https://doi.org/10.1038/natrevmats.2015.10

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing