Purinergic system in psychiatric diseases

Article metrics

Abstract

Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. 1

    Burnstock G, Campbell G, Satchell D, Smythe A . Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 1970; 40: 668–688.

  2. 2

    Su C, Bevan JA, Burnstock G . [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science 1971; 173: 336–338.

  3. 3

    Nakanishi H, Takeda H . The possible role of adenosine triphosphate in chemical transmission between the hypogastric nerve terminal and seminal vesicle in the guinea-pig. Jpn J Pharmacol 1973; 23: 479–490.

  4. 4

    Langer SZ, Pinto JE . Possible involvement of a transmitter different from norepinephrine in the residual responses to nerve stimulation of the cat nictitating membrane after pretreatment with reserpine. J Pharmacol Exp Ther 1976; 196: 697–713.

  5. 5

    Burnstock G . Do some nerve cells release more than one transmitter? Neuroscience 1976; 1: 239–248.

  6. 6

    French AM, Scott NC . Evidence to support the hypothesis that ATP is a co-transmitter in rat vas deferens. Experientia 1983; 39: 264–266.

  7. 7

    Burnstock G . Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87: 659–797.

  8. 8

    Burnstock G, Krügel U, Abbracchio MP, Illes P . Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95: 229–274.

  9. 9

    Burnstock G, Dumsday B, Smythe A . Atropine resistant excitation of the urinary bladder: zthe possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol 1972; 44: 451–461.

  10. 10

    Ralevic V, Burnstock G . Receptors for purines and pyrimidines. Pharmacol Rev 1998; 50: 413–492.

  11. 11

    Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C et al. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58: 281–341.

  12. 12

    Cunha RA . Regulation of the ecto-nucleotidase pathway in rat hippocampal nerve terminals. Neurochem Res 2001; 26: 979–991.

  13. 13

    Verkhratsky A, Burnstock G, Zimmermann H, Abbracchio MP . Purinergic signalling in the nervous system: an overview. Trends Neurosci 2009; 32: 19–29.

  14. 14

    Zimmermann H . Ectonucleotidases in the nervous system. Novartis Found Symp 2006; 276: 113–128, 128-130, 233–237, 275–281.

  15. 15

    Burnstock G . A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L . (eds). Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach. Raven Press: New York, 1978, pp 107–118.

  16. 16

    Fredholm BB, Abbracchio MP, Burnstock G, Dubyak GR, Harden TK, Jacobson KA et al. Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci 1997; 18: 79–82.

  17. 17

    Ciruela F, Albergaria C, Soriano A, Cuffí L, Carbonell L, Sánchez S et al. Adenosine receptors interacting proteins (ARIPs): behind the biology of adenosine signaling. Biochim Biophys Acta 2010; 1798: 9–20.

  18. 18

    Di Virgilio F . Purines, purinergic receptors, and cancer. Cancer Res 2012; 72: 5441–5447.

  19. 19

    Cunha RA, Correia-de-Sá P, Sebastião AM, Ribeiro JA . Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. Br J Pharmacol 1996; 119: 253–260.

  20. 20

    Cunha RA . How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139: 1019–1055.

  21. 21

    Burnstock G, Kennedy C . Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 1985; 16: 433–440.

  22. 22

    Burnstock G . The past, present and future of purine nucleotides as signalling molecules. Neuropharmacology 1997; 36: 1127–1139.

  23. 23

    North RA . P2X receptors: a third major class of ligand-gated ion channels. Ciba Found Symp 1996; 198: 91–105, 105-109.

  24. 24

    Barrera NP, Ormond SJ, Henderson RM, Murrell-Lagnado RD, Edwardson JM . Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. J Biol Chem 2005; 280: 10759–10765.

  25. 25

    Barrera NP, Ge H, Henderson RM, Fitzgerald WJ, Edwardson JM . Automated analysis of the architecture of receptors, imaged by atomic force microscopy. Micron 2008; 39: 101–110.

  26. 26

    Dubyak GR, El-Moatassim C . Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 1993; 265: C577–C606.

  27. 27

    Verkhratsky A, Anderova M, Chvatal A . Differential calcium signalling in neuronal-glial networks. Front Biosci (Landmark Ed) 2009; 14: 2004–2016.

  28. 28

    Burnstock G, Ulrich H . Purinergic signaling in embryonic and stem cell development. Cell Mol Life Sci 2011; 68: 1369–1394.

  29. 29

    Burnstock G . Introductory overview of purinergic signalling. Front Biosci (Elite Ed) 2011; 3: 896–900.

  30. 30

    Cunha RA . Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 2005; 1: 111–134.

  31. 31

    Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM . Adenosine and Brain Function. Int Rev Neurobiol 2005; 63: 191–270.

  32. 32

    Cunha RA, Ferré S, Vaugeois J-M, Chen J-F . Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 2008; 14: 1512–1524.

  33. 33

    Campbell NG, Zhu C-B, Lindler KM, Yaspan BL, Kistner-Griffin E et al, NIH ARRA Consortium WA. Rare coding variants of the adenosine A3 receptor are increased in autism: on the trail of the serotonin transporter regulome. Mol Autism 2013; 4: 28.

  34. 34

    Dennis SH, Jaafari N, Cimarosti H, Hanley JG, Henley JM, Mellor JR . Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors. J Neurosci 2011; 31: 11941–11952.

  35. 35

    Oliveira Á, Illes P, Ulrich H . Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 2016; 104: 272–281.

  36. 36

    Ströhle A, Holsboer F . Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 2003; 36 (Suppl 3): S207–S214.

  37. 37

    Scaccianoce S, Navarra D, Di Sciullo A, Angelucci L, Endröczi E . Adenosine and pituitary-adrenocortical axis activity in the rat. Neuroendocrinology 1989; 50: 464–468.

  38. 38

    Chen Y-C, Huang S-H, Wang S-M . Adenosine-stimulated adrenal steroidogenesis involves the adenosine A2A and A2B receptors and the Janus kinase 2-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase signaling pathway. Int J Biochem Cell Biol 2008; 40: 2815–2825.

  39. 39

    Batalha VL, Ferreira DG, Coelho JE, Valadas JS, Gomes R, Temido-Ferreira M et al. The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep 2016; 6: 31493.

  40. 40

    Batalha VL, Pego JM, Fontinha BM, Costenla AR, Valadas JS, Baqi Y et al. Adenosine A(2A) receptor blockade reverts hippocampal stress-induced deficits and restores corticosterone circadian oscillation. Mol Psychiatry 2013; 18: 320–331.

  41. 41

    Kaster MP, Machado NJ, Silva HB, Nunes A, Ardais AP, Santana M et al. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci USA 2015; 112: 201423088.

  42. 42

    Okada M, Nutt DJ, Murakami T, Zhu G, Kamata a, Kawata Y et al. Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release. J Neurosci 2001; 21: 628–640.

  43. 43

    Stutzmann GE, Marek GJ, Aghajanian GK . Adenosine preferentially suppresses serotonin2A receptor-enhanced excitatory postsynaptic currents in layer V neurons of the rat medial prefrontal cortex. Neuroscience 2001; 105: 55–69.

  44. 44

    Serchov T, Clement H-W, Schwarz MK, Iasevoli F, Tosh DK, Idzko M et al. Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of Homer1a. Neuron 2015; 87: 549–562.

  45. 45

    Kim JJ, Diamond DM . The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 2002; 3: 453–462.

  46. 46

    McEwen BS . Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 2007; 87: 873–904.

  47. 47

    Harris A, Ursin H, Murison R, Eriksen HR . Coffee, stress and cortisol in nursing staff. Psychoneuroendocrinology 2007; 32: 322–330.

  48. 48

    Wang L, Shen X, Wu Y, Zhang D . Coffee and caffeine consumption and depression: a meta-analysis of observational studies. Aust N Z J Psychiatry 2016; 50: 228–242.

  49. 49

    Lucas M, Mirzaei F, Pan A, Okereke OI, Willett WC, O’Reilly ÉJ et al. Coffee, caffeine, and risk of depression among women. Arch Intern Med 2011; 171: 1571–1578.

  50. 50

    Lucas M, O’Reilly EJ, Pan A, Mirzaei F, Willett WC, Okereke OI et al. Coffee, caffeine, and risk of completed suicide: results from three prospective cohorts of American adults. World J Biol Psychiatry 2014; 15: 377–386.

  51. 51

    Kawachi I, Willett WC, Colditz GA, Stampfer MJ, Speizer FE . A prospective study of coffee drinking and suicide in women. Arch Intern Med 1996; 156: 521–525.

  52. 52

    Coelho JE, Alves P, Canas PM, Valadas JS, Shmidt T, Batalha VL et al. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front Psychiatry 2014; 5: 67.

  53. 53

    Kaster MP, Rosa AO, Rosso MM, Goulart EC, Santos ARS, Rodrigues ALS . Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors. Neurosci Lett 2004; 355: 21–24.

  54. 54

    Yamada K, Kobayashi M, Mori A, Jenner P, Kanda T . Antidepressant-like activity of the adenosine A(2A) receptor antagonist, istradefylline (KW-6002), in the forced swim test and the tail suspension test in rodents. Pharmacol Biochem Behav 2013; 114–115: 23–30.

  55. 55

    Berk M, Plein H, Ferreira D, Jersky B, Seymour PA, Koe BK et al. Blunted adenosine A2a receptor function in platelets in patients with major depression. Eur Neuropsychopharmacol 2001; 11: 183–186.

  56. 56

    da Silva RB, Siebel AM, Bonan CD . The role of purinergic and dopaminergic systems on MK-801-induced antidepressant effects in zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B: 149–157.

  57. 57

    Zimmermann FF, Altenhofen S, Kist LW, Leite CE, Bogo MR, Cognato GP et al. Unpredictable chronic stress alters adenosine metabolism in zebrafish brain. Mol Neurobiol 2016; 53: 2518–2528.

  58. 58

    Ali-Sisto T, Tolmunen T, Toffol E, Viinamäki H, Mäntyselkä P, Valkonen-Korhonen M et al. Purine metabolism is dysregulated in patients with major depressive disorder. Psychoneuroendocrinology 2016; 70: 25–32.

  59. 59

    Pedrazza EL, Rico EP, Senger MR, Pedrazza L, Zimmermann FF, Sarkis JJF et al. Ecto-nucleotidase pathway is altered by different treatments with fluoxetine and nortriptyline. Eur J Pharmacol 2008; 583: 18–25.

  60. 60

    Bowser DN, Khakh BS . Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 2007; 129: 485–491.

  61. 61

    Rebola N, Simões AP, Canas PM, Tomé AR, Andrade GM, Barry CE et al. Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 2011; 117: 100–111.

  62. 62

    Gomes C, Ferreira R, George J, Sanches R, Rodrigues DI, Gonçalves N et al. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflammation 2013; 10: 780.

  63. 63

    Gyoneva S, Shapiro L, Lazo C, Garnier-Amblard E, Smith Y, Miller GW et al. Adenosine A2A receptor antagonism reverses inflammation-induced impairment of microglial process extension in a model of Parkinson’s disease. Neurobiol Dis 2014; 67: 191–202.

  64. 64

    Madeira MH, Elvas F, Boia R, Gonçalves FQ, Cunha RA, Ambrósio AF et al. Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. J Neuroinflammation 2015; 12: 115.

  65. 65

    Matos M, Augusto E, Machado NJ, dos Santos-Rodrigues A, Cunha RA, Agostinho P . Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J Alzheimers Dis 2012; 31: 555–567.

  66. 66

    Orr AG, Hsiao EC, Wang MM, Ho K, Kim DH, Wang X et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci 2015; 18: 423–434.

  67. 67

    Rial D, Lemos C, Pinheiro H, Duarte JM, Gonçalves FQ, Real JI et al. Depression as a glial-based synaptic dysfunction. Front Cell Neurosci 2015; 9: 521.

  68. 68

    Cao X, Li L-P, Wang Q, Wu Q, Hu H-H, Zhang M et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 2013; 19: 773–777.

  69. 69

    Golden SA, Covington HE, Berton O, Russo SJ . A standardized protocol for repeated social defeat stress in mice. Nat Protoc 2011; 6: 1183–1191.

  70. 70

    Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006; 311: 864–868.

  71. 71

    Raison CL, Capuron L, Miller AH . Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006; 27: 24–31.

  72. 72

    Howren MB, Lamkin DM, Suls J . Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 2009; 71: 171–186.

  73. 73

    Stokes L, Spencer SJ, Jenkins TA . Understanding the role of P2X7 in affective disorders-are glial cells the major players? Front Cell Neurosci 2015; 9: 258.

  74. 74

    Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 2014; 19: 699–709.

  75. 75

    Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR . Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex 2013; 23: 1784–1797.

  76. 76

    Hines DJ, Schmitt LI, Hines RM, Moss SJ, Haydon PG . Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Transl Psychiatry 2013; 3: e212.

  77. 77

    Li P, Rial D, Canas PM, Yoo J-H, Li W, Zhou X et al. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Mol Psychiatry 2015; 20: 1339–1349.

  78. 78

    Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW, Rueter LE . Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res 2009; 198: 83–90.

  79. 79

    Boucher AA, Arnold JC, Hunt GE, Spiro A, Spencer J, Brown C et al. Resilience and reduced c-Fos expression in P2X7 receptor knockout mice exposed to repeated forced swim test. Neuroscience 2011; 189: 170–177.

  80. 80

    Csölle C, Baranyi M, Zsilla G, Kittel A, Gölöncsér F, Illes P et al. Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors. PLoS ONE 2013; 8: e66547.

  81. 81

    Barrientos RM, Sprunger DB, Campeau S, Higgins EA, Watkins LR, Rudy JW et al. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 2003; 121: 847–853.

  82. 82

    Csölle C, Andó RD, Kittel Á, Gölöncsér F, Baranyi M, Soproni K et al. The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. Int J Neuropsychopharmacol 2013; 16: 213–233.

  83. 83

    Nagy G, Ronai Z, Somogyi A, Sasvari-Szekely M, Rahman OA, Mate A et al. P2RX7 Gln460Arg polymorphism is associated with depression among diabetic patients. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1884–1888.

  84. 84

    Lucae S, Salyakina D, Barden N, Harvey M, Gagné B, Labbé M et al. P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Hum Mol Genet 2006; 15: 2438–2445.

  85. 85

    Soronen P, Mantere O, Melartin T, Suominen K, Vuorilehto M, Rytsälä H et al. P2RX7 gene is associated consistently with mood disorders and predicts clinical outcome in three clinical cohorts. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 435–447.

  86. 86

    McQuillin A, Bass NJ, Choudhury K, Puri V, Kosmin M, Lawrence J et al. Case-control studies show that a non-conservative amino-acid change from a glutamine to arginine in the P2RX7 purinergic receptor protein is associated with both bipolar- and unipolar-affective disorders. Mol Psychiatry 2009; 14: 614–620.

  87. 87

    Aprile-Garcia F, Metzger MW, Paez-Pereda M, Stadler H, Acuña M, Liberman AC et al. Co-expression of wild-type P2X7R with Gln460Arg variant alters receptor function. PLoS ONE 2016; 11: e0151862.

  88. 88

    Portales-Cervantes L, Niño-Moreno P, Salgado-Bustamante M, García-Hernández MH, Baranda-Candido L, Reynaga-Hernández E et al. The His155Tyr (489C>T) single nucleotide polymorphism of P2RX7 gene confers an enhanced function of P2X7 receptor in immune cells from patients with rheumatoid arthritis. Cell Immunol 2012; 276: 168–175.

  89. 89

    Luchins D . The dopamine hypothesis of schizophrenia. A critical analysis. Neuropsychobiology 1975; 1: 365–378.

  90. 90

    Seeman P, Chau-Wong M, Tedesco J, Wong K . Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 1975; 72: 4376–4380.

  91. 91

    Steeds H, Carhart-Harris RL, Stone JM . Drug models of schizophrenia. Ther Adv Psychopharmacol 2015; 5: 43–58.

  92. 92

    Carlsson A, Waters N, Carlsson ML . Neurotransmitter interactions in schizophrenia—therapeutic implications. Biol Psychiatry 1999; 46: 1388–1395.

  93. 93

    de Mendonça A, Sebastião AM, Ribeiro JA . Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 1995; 6: 1097–1100.

  94. 94

    Dolphin AC, Prestwich SA . Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 1985; 316: 148–150.

  95. 95

    Barrie AP, Nicholls DG . Adenosine A1 receptor inhibition of glutamate exocytosis and protein kinase C-mediated decoupling. J Neurochem 1993; 60: 1081–1086.

  96. 96

    Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M et al. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 2006; 26: 2080–2087.

  97. 97

    Marchi M, Raiteri L, Risso F, Vallarino A, Bonfanti A, Monopoli A et al. Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br J Pharmacol 2002; 136: 434–440.

  98. 98

    Borycz J, Pereira MF, Melani A, Rodrigues RJ, Köfalvi A, Panlilio L et al. Differential glutamate-dependent and glutamate-independent adenosine A1 receptor-mediated modulation of dopamine release in different striatal compartments. J Neurochem 2007; 101: 355–363.

  99. 99

    Higley MJ, Sabatini BL . Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 2010; 13: 958–966.

  100. 100

    Yan L, Burbiel JC, Maass A, Müller CE . Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs 2003; 8: 537–576.

  101. 101

    Ferré S, O’Connor WT, Snaprud P, Ungerstedt U, Fuxe K . Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia. Neuroscience 1994; 63: 765–773.

  102. 102

    Díaz-Cabiale Z, Hurd Y, Guidolin D, Finnman UB, Zoli M, Agnati LF et al. Adenosine A2A agonist CGS 21680 decreases the affinity of dopamine D2 receptors for dopamine in human striatum. Neuroreport 2001; 12: 1831–1834.

  103. 103

    Akhondzadeh S, Shasavand E, Jamilian H, Shabestari O, Kamalipour A . Dipyridamole in the treatment of schizophrenia: adenosine-dopamine receptor interactions. J Clin Pharm Ther 2000; 25: 131–137.

  104. 104

    Brunstein MG, Ghisolfi ES, Ramos FLP, Lara DR . A clinical trial of adjuvant allopurinol therapy for moderately refractory schizophrenia. J Clin Psychiatry 2005; 66: 213–219.

  105. 105

    Wonodi I, Gopinath HV, Liu J, Adami H, Hong LE, Allen-Emerson R et al. Dipyridamole monotherapy in schizophrenia: pilot of a novel treatment approach by modulation of purinergic signaling. Psychopharmacology (Berl) 2011; 218: 341–345.

  106. 106

    Weiser M, Gershon AA, Rubinstein K, Petcu C, Ladea M, Sima D et al. A randomized controlled trial of allopurinol vs. placebo added on to antipsychotics in patients with schizophrenia or schizoaffective disorder. Schizophr Res 2012; 138: 35–38.

  107. 107

    Villar-Menéndez I, Díaz-Sánchez S, Blanch M, Albasanz JL, Pereira-Veiga T, Monje A et al. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia. J Psychiatr Res 2014; 51: 49–59.

  108. 108

    Hwang Y, Kim J, Shin JY, Kim JI, Seo JS, Webster MJ et al. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl Psychiatry 2013; 3: e321.

  109. 109

    Zhang J, Abdallah CG, Wang J, Wan X, Liang C, Jiang L et al. Upregulation of adenosine A2A receptors induced by atypical antipsychotics and its correlation with sensory gating in schizophrenia patients. Psychiatry Res 2012; 200: 126–132.

  110. 110

    Wang JH, Short J, Ledent C, Lawrence AJ, van den Buuse M . Reduced startle habituation and prepulse inhibition in mice lacking the adenosine A2A receptor. Behav Brain Res 2003; 143: 201–207.

  111. 111

    Moscoso-Castro M, Gracia-Rubio I, Ciruela F, Valverde O . Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice. Eur Neuropsychopharmacol 2016; 26: 1227–1240.

  112. 112

    Hauber W, Koch M . Adenosine A2a receptors in the nucleus accumbens modulate prepulse inhibition of the startle response. Neuroreport 1997; 8: 1515–1518.

  113. 113

    Matos M, Shen H-Y, Augusto E, Wang Y, Wei CJ, Wang YT et al. Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia. Biol Psychiatry 2015; 78: 763–774.

  114. 114

    Shen H-Y, Singer P, Lytle N, Wei CJ, Lan J-Q, Williams-Karnesky RL et al. Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest 2012; 122: 2567–2577.

  115. 115

    Aliagas E, Villar-Menéndez I, Sévigny J, Roca M, Romeu M, Ferrer I et al. Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the ‘adenosine hypothesis’. Purinergic Signal 2013; 9: 599–608.

  116. 116

    Wei CJ, Augusto E, Gomes CA, Singer P, Wang Y, Boison D et al. Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain. Biol Psychiatry 2014; 75: 855–863.

  117. 117

    Deckert J, Nöthen MM, Rietschel M, Wildenauer D, Bondy B, Ertl MA et al. Human adenosine A2a receptor (A2aAR) gene: systematic mutation screening in patients with schizophrenia. J Neural Transm 1996; 103: 1447–1455.

  118. 118

    Hong CJ, Liu HC, Liu TY, Liao DL, Tsai SJ . Association studies of the adenosine A2a receptor (1976T > C) genetic polymorphism in Parkinson’s disease and schizophrenia. J Neural Transm (Vienna) 2005; 112: 1503–1510.

  119. 119

    Gotoh L, Mitsuyasu H, Kobayashi Y, Oribe N, Takata A, Ninomiya H et al. Association analysis of adenosine A1 receptor gene (ADORA1) polymorphisms with schizophrenia in a Japanese population. Psychiatr Genet 2009; 19: 328–335.

  120. 120

    Dutra GP, Ottoni GL, Lara DR, Bogo MR . Lower frequency of the low activity adenosine deaminase allelic variant (ADA1*2) in schizophrenic patients. Rev Bras Psiquiatr 2010; 32: 275–8.

  121. 121

    Seibt KJ, da Luz Oliveira R, Bogo MR, Senger MR, Bonan CD . Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain. Fish Physiol Biochem 2015; 41: 1383–1392.

  122. 122

    Zhang YX, Yamashita H, Ohshita T, Sawamoto N, Nakamura S . ATP induces release of newly synthesized dopamine in the rat striatum. Neurochem Int 1996; 28: 395–400.

  123. 123

    Krügel U, Kittner H, Illes P . Adenosine 5’-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Neurosci Lett 1999; 265: 49–52.

  124. 124

    Zhang YX, Yamashita H, Ohshita T, Sawamoto N, Nakamura S . ATP increases extracellular dopamine level through stimulation of P2Y purinoceptors in the rat striatum. Brain Res 1995; 691: 205–212.

  125. 125

    Hempel C, Nörenberg W, Sobottka H, Urban N, Nicke A, Fischer W et al. The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology 2013; 75: 365–379.

  126. 126

    Söderlund J, Schröder J, Nordin C, Samuelsson M, Walther-Jallow L, Karlsson H et al. Activation of brain interleukin-1beta in schizophrenia. Mol Psychiatry 2009; 14: 1069–1071.

  127. 127

    Mingam R, De Smedt V, Amédée T, Bluthé R-M, Kelley KW, Dantzer R et al. In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1 beta in the murine brain. Brain Behav Immun 2008; 22: 234–244.

  128. 128

    Koványi B, Csölle C, Calovi S, Hanuska A, Kató E, Köles L et al. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model. Sci Rep 2016; 6: 36680.

  129. 129

    Campos RC, Parfitt GM, Polese CE, Coutinho-Silva R, Morrone FB, Barros DM . Pharmacological blockage and P2X7 deletion hinder aversive memories: reversion in an enriched environment. Neuroscience 2014; 280: 220–230.

  130. 130

    Hansen T, Jakobsen KD, Fenger M, Nielsen J, Krane K, Fink-Jensen A et al. Variation in the purinergic P2RX(7) receptor gene and schizophrenia. Schizophr Res 2008; 104: 146–152.

  131. 131

    Barondes SH . Mood Genes: Hunting for Origins of Mania and Depression. Oxford University Press: New York, NY, 1999.

  132. 132

    Shorter E . The history of lithium therapy. Bipolar Disord 2009; 11 (Suppl 2): 4–9.

  133. 133

    Bartoli F, Crocamo C, Gennaro GM, Castagna G, Trotta G, Clerici M et al. Exploring the association between bipolar disorder and uric acid: a mediation analysis. J Psychosom Res 2016; 84: 56–59.

  134. 134

    Ortiz R, Ulrich H, Zarate CA, Machado-Vieira R . Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57: 117–131.

  135. 135

    Machado-Vieira R, Lara DR, Souza DO, Kapczinski F . Purinergic dysfunction in mania: an integrative model. Med Hypotheses 2002; 58: 297–304.

  136. 136

    Sutin AR, Cutler RG, Camandola S, Uda M, Feldman NH, Cucca F et al. Impulsivity is associated with uric acid: evidence from humans and mice. Biol Psychiatry 2014; 75: 31–37.

  137. 137

    Albert U, De Cori D, Aguglia A, Barbaro F, Bogetto F, Maina G . Increased uric acid levels in bipolar disorder subjects during different phases of illness. J Affect Disord 2015; 173: 170–175.

  138. 138

    Muti M, Del Grande C, Musetti L, Marazziti D, Turri M, Cirronis M et al. Serum uric acid levels and different phases of illness in bipolar I patients treated with lithium. Psychiatry Res 2015; 225: 604–608.

  139. 139

    Kesebir S, Tatlıdil Yaylacı E, Süner O, Gültekin BK . Uric acid levels may be a biological marker for the differentiation of unipolar and bipolar disorder: the role of affective temperament. J Affect Disord 2014; 165: 131–134.

  140. 140

    Chung K-H, Huang C-C, Lin H-C . Increased risk of gout among patients with bipolar disorder: a nationwide population-based study. Psychiatry Res 2010; 180: 147–150.

  141. 141

    Weiser M, Burshtein S, Gershon AA, Marian G, Vlad N, Grecu IG et al. Allopurinol for mania: a randomized trial of allopurinol versus placebo as add-on treatment to mood stabilizers and/or antipsychotic agents in manic patients with bipolar disorder. Bipolar Disord 2014; 16: 441–447.

  142. 142

    Machado-Vieira R, Soares JC, Lara DR, Luckenbaugh DA, Busnello JV, Marca G et al. A double-blind, randomized, placebo-controlled 4-week study on the efficacy and safety of the purinergic agents allopurinol and dipyridamole adjunctive to lithium in acute bipolar mania. J Clin Psychiatry 2008; 69: 1237–1245.

  143. 143

    Machado-Vieira R . Purinergic system in the treatment of bipolar disorder: uric acid levels as a screening test in mania. J Clin Psychopharmacol 2012; 32: 735–736.

  144. 144

    Pacher P, Nivorozhkin A, Szabó C . Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58: 87–114.

  145. 145

    Lara DR, Cruz MRS, Xavier F, Souza DO, Moriguchi EH . Allopurinol for the treatment of aggressive behaviour in patients with dementia. Int Clin Psychopharmacol 2003; 18: 53–55.

  146. 146

    Gubert C, Jacintho Moritz CE, Vasconcelos-Moreno MP, Quadros dos Santos BTM, Sartori J, Fijtman A et al. Peripheral adenosine levels in euthymic patients with bipolar disorder. Psychiatry Res 2016; 246: 421–426.

  147. 147

    Hirota T, Kishi T . Adenosine hypothesis in schizophrenia and bipolar disorder: a systematic review and meta-analysis of randomized controlled trial of adjuvant purinergic modulators. Schizophr Res 2013; 149: 88–95.

  148. 148

    Weir RL, Anderson SM, Daly JW . Inhibition of N6-[3H]cyclohexyladenosine binding by carbamazepine. Epilepsia 31: 503–512.

  149. 149

    Van Calker D, Steber R, Klotz KN, Greil W . Carbamazepine distinguishes between adenosine receptors that mediate different second messenger responses. Eur J Pharmacol 1991; 206: 285–290.

  150. 150

    Deckert J, Nöthen MM, Albus M, Franzek E, Rietschel M, Ren H et al. Adenosine A1 receptor and bipolar affective disorder: systematic screening of the gene and association studies. Am J Med Genet 1998; 81: 18–23.

  151. 151

    Martini C, Tuscano D, Trincavelli ML, Cerrai E, Bianchi M, Ciapparelli A et al. Upregulation of A2A adenosine receptors in platelets from patients affected by bipolar disorders under treatment with typical antipsychotics. J Psychiatr Res 2006; 40: 81–88.

  152. 152

    Knight J, Rochberg NS, Saccone SF, Nurnberger JI, Rice JP . An investigation of candidate regions for association with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1292–1297.

  153. 153

    Backlund L, Nikamo P, Hukic DS, Ek IR, Träskman-Bendz L, Landén M et al. Cognitive manic symptoms associated with the P2RX7 gene in bipolar disorder. Bipolar Disord 2011; 13: 500–508.

  154. 154

    Barden N, Harvey M, Gagné B, Shink E, Tremblay M, Raymond C et al. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 374–382.

  155. 155

    Halmai Z, Dome P, Vereczkei A, Abdul-Rahman O, Szekely A, Gonda X et al. Associations between depression severity and purinergic receptor P2RX7 gene polymorphisms. J Affect Disord 2013; 150: 104–109.

  156. 156

    Grigoroiu-Serbanescu M, Herms S, Mühleisen TW, Georgi A, Diaconu CC, Strohmaier J et al. Variation in P2RX7 candidate gene (rs2230912) is not associated with bipolar I disorder and unipolar major depression in four European samples. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 1017–1021.

  157. 157

    Green EK, Grozeva D, Raybould R, Elvidge G, Macgregor S, Craig I et al. P2RX7: a bipolar and unipolar disorder candidate susceptibility gene? Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 1063–1069.

  158. 158

    Backlund L, Lavebratt C, Frisén L, Nikamo P, Hukic Sudic D, Träskman-Bendz L et al. P2RX7: expression responds to sleep deprivation and associates with rapid cycling in bipolar disorder type 1. PLoS ONE 2012; 7: e43057.

  159. 159

    Feng WP, Zhang B, Li W, Liu J . Lack of association of P2RX7 gene rs2230912 polymorphism with mood disorders: a meta-analysis. PLoS ONE 2014; 9: 1–6.

  160. 160

    Sperlagh B, Csolle C, Ando RD, Goloncser F, Kittel A, Baranyi M . The role of purinergic signaling in depressive disorders. Neuropsychopharmacol Hung 2012; 14: 231–238.

  161. 161

    Bhattacharya A, Wang Q, Ao H, Shoblock JR, Lord B, Aluisio L et al. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol 2013; 170: 624–640.

  162. 162

    Dodd S, Fernandes BS, Dean OM . Future directions for pharmacotherapies for treatment-resistant bipolar disorder. Curr Neuropharmacol 2015; 13: 656–662.

  163. 163

    Gubert C, Fries GR, Pfaffenseller B, Ferrari P, Coutinho-Silva R, Morrone FB et al. Role of P2X7 receptor in an animal model of mania induced by D-amphetamine. Mol Neurobiol 2016; 53: 611–620.

  164. 164

    Masuch A, Shieh C-H, van Rooijen N, van Calker D, Biber K . Mechanism of microglia neuroprotection: involvement of P2X7, TNFα, and valproic acid. Glia 2016; 64: 76–89.

  165. 165

    Page T, Yu A, Fontanesi J, Nyhan WL . Developmental disorder associated with increased cellular nucleotidase activity. Proc Natl Acad Sci USA 1997; 94: 11601–11606.

  166. 166

    Bottini N, De Luca D, Saccucci P, Fiumara A, Elia M, Porfirio MC et al. Autism: evidence of association with adenosine deaminase genetic polymorphism. Neurogenetics 2001; 3: 111–113.

  167. 167

    Masino SA, Kawamura M, Plotkin LM, Svedova J, DiMario FJ, Eigsti I-M . The relationship between the neuromodulator adenosine and behavioral symptoms of autism. Neurosci Lett 2011; 500: 1–5.

  168. 168

    Masino SA, Kawamura M, Cote JL, Williams RB, Ruskin DN . Adenosine and autism: a spectrum of opportunities. Neuropharmacology 2013; 68: 116–121.

  169. 169

    Ciruela F, Saura C, Canela EI, Mallol J, Lluis C, Franco R . Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett 1996; 380: 219–223.

  170. 170

    Freitag CM, Agelopoulos K, Huy E, Rothermundt M, Krakowitzky P, Meyer J et al. Adenosine A2A receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. Eur Child Adolesc Psychiatry 2010; 19: 67–74.

  171. 171

    Tanimura Y, Vaziri S, Lewis MH . Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists. Behav Brain Res 2010; 210: 116–122.

  172. 172

    López-Cruz L, Carbó-Gas M, Pardo M, Bayarri P, Valverde O, Ledent C et al. Adenosine A2A receptor deletion affects social behaviors and anxiety in mice: involvement of anterior cingulate cortex and amygdala. Behav Brain Res 2017; 321: 8–17.

  173. 173

    Yu C, Gupta J, Chen J-F, Yin HH . Genetic deletion of A2A adenosine receptors in the striatum selectively impairs habit formation. J Neurosci 2009; 29: 15100–15103.

  174. 174

    Nam HW, Hinton DJ, Kang NY, Kim T, Lee MR, Oliveros A et al. Adenosine transporter ENT1 regulates the acquisition of goal-directed behavior and ethanol drinking through A2A receptor in the dorsomedial striatum. J Neurosci 2013; 33: 4329–4338.

  175. 175

    Li Y, He Y, Chen M, Pu Z, Chen L, Li P et al. Optogenetic activation of adenosine A2A receptor signaling in the dorsomedial striatopallidal neurons suppresses goal-directed behavior. Neuropsychopharmacology 2016; 41: 1003–1013.

  176. 176

    Shen W, Flajolet M, Greengard P, Surmeier DJ . Dichotomous dopaminergic control of striatal synaptic plasticity. Science 2008; 321: 848–851.

  177. 177

    Squillace M, Dodero L, Federici M, Migliarini S, Errico F, Napolitano F et al. Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Transl Psychiatry 2014; 4: e427.

  178. 178

    He Y, Li Y, Chen M, Pu Z, Zhang F, Chen L et al. Habit formation after random interval training is associated with increased adenosine A2A receptor and dopamine D2 receptor heterodimers in the striatum. Front Mol Neurosci 2016; 9: 151.

  179. 179

    Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM et al. Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 1992; 14: 186–195.

  180. 180

    Prasad HC, Steiner JA, Sutcliffe JS, Blakely RD . Enhanced activity of human serotonin transporter variants associated with autism. Philos Trans R Soc B Biol Sci 2009; 364: 163–173.

  181. 181

    Zhu C-B, Lindler KM, Campbell NG, Sutcliffe JS, Hewlett WA, Blakely RD . Colocalization and regulated physical association of presynaptic serotonin transporters with A3 adenosine receptors. Mol Pharmacol 2011; 80: 458–465.

  182. 182

    Wyatt LR, Godar SC, Khoja S, Jakowec MW, Alkana RL, Bortolato M et al. Sociocommunicative and sensorimotor impairments in male P2X4-deficient mice. Neuropsychopharmacology 2013; 38: 1993–2002.

  183. 183

    Naviaux RK, Zolkipli Z, Wang L, Nakayama T, Naviaux JC, Le TP et al. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS ONE 2013; 8: e57380.

  184. 184

    Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB, Powell SB et al. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry 2014; 4: e400.

  185. 185

    Naviaux JC, Wang L, Li K, Bright AT, Alaynick WA, Williams KR et al. Antipurinergic therapy corrects the autism-like features in the Fragile X (Fmr1 knockout) mouse model. Mol Autism 2015; 6: 1.

  186. 186

    Naviaux RK, Curtis B, Li K, Naviaux JC, Bright AT, Gail E et al. Low-dose suramin in autism spectrum disorder: a small, phase I / II, randomized clinical trial. Ann Clin Transl Neurol 2017; 4: 491–505.

  187. 187

    Theoharides TC . Extracellular mitochondrial ATP, suramin, and autism? Clin Ther 2013; 35: 1454–1456.

  188. 188

    Hamidpour R, Hamidpour S, Hamidpour M, Zarabi M, Sohraby M, Shalari M . Antipurinergic therapy with suramin as a treatment for autism spectrum disorder. J Biomed Sci 2016; 5: 2:14.

  189. 189

    Theoharides TC, Asadi S, Panagiotidou S, Weng Z . The ‘missing link’ in autoimmunity and autism: extracellular mitochondrial components secreted from activated live mast cells. Autoimmun Rev 2013; 12: 1136–1142.

  190. 190

    Di Virgilio F . Dr. Jekyll/Mr. Hyde: the dual role of extracellular ATP. J Auton Nerv Syst 2000; 81: 59–63.

  191. 191

    Rodrigues RJ, Tomé AR, Cunha RA . ATP as a multi-target danger signal in the brain. Front Neurosci 2015; 9: 148.

  192. 192

    Deckert J . The adenosine A2A receptor knockout mouse: a model for anxiety? Int J Neuropsychopharmacol 1998; 1: 187–190.

  193. 193

    Parmentier M, Ledent C, Vaugeois J-M, Schiffmann SN, Pedrazzini T, Yacoubi MEL et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 1997; 388: 674–678.

  194. 194

    Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Giménez-Llort L et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 2001; 98: 9407–9412.

  195. 195

    Maximino C, Lima MG, Olivera KRM, Picanço-Diniz DLW, Herculano AM . Adenosine A1, but not A2, receptor blockade increases anxiety and arousal in zebrafish. Basic Clin Pharmacol Toxicol 2011; 109: 203–207.

  196. 196

    Caetano L, Pinheiro H, Patrício P, Mateus-Pinheiro A, Alves ND, Coimbra B et al. Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Mol Psychiatry 2016; 22: 1035–1043.

  197. 197

    Vincenzi F, Ravani A, Pasquini S, Merighi S, Gessi S, Romagnoli R et al. Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety. Neuropharmacology 2016; 111: 283–292.

  198. 198

    Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO et al. Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol 2016; 54: 423–436.

  199. 199

    Jain N, Kemp N, Adeyemo O, Buchanan P, Stone W . Anxiolytic activity of adenosine receptor activation in mice. Br J Pharmacol 1995; 116: 2127–2133.

  200. 200

    Florio C, Prezioso A, Papaioannou A, Vertua R . Adenosine A1 receptors modulate anxiety in CD1 mice. Psychopharmacology (Berl) 1998; 136: 311–319.

  201. 201

    Charney DS, Heninger GR, Jatlow PI . Increased anxiogenic effects of caffeine in panic disorders. Arch Gen Psychiatry 1985; 42: 233–243.

  202. 202

    Alsene K, Deckert J, Sand P, de Wit H . Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2003; 28: 1694–1702.

  203. 203

    Gajewska A, Blumenthal TD, Winter B, Herrmann MJ, Conzelmann A, Mühlberger A et al. Effects of ADORA2A gene variation and caffeine on prepulse inhibition: a multi-level risk model of anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40: 115–121.

  204. 204

    Domschke K, Gajewska A, Winter B, Herrmann MJ, Warrings B, Mühlberger A et al. ADORA2A gene variation, caffeine, and emotional processing: a multi-level interaction on startle reflex. Neuropsychopharmacology 2012; 37: 759–769.

  205. 205

    Deckert J, Nöthen MM, Franke P, Delmo C, Fritze J, Knapp M et al. Systematic mutation screening and association study of the A1 and A2a adenosine receptor genes in panic disorder suggest a contribution of the A2a gene to the development of disease. Mol Psychiatry 1998; 3: 81–85.

  206. 206

    Hohoff C, Mullings EL, Heatherley SV, Freitag CM, Neumann LC, Domschke K et al. Adenosine A2A receptor gene: evidence for association of risk variants with panic disorder and anxious personality. J Psychiatr Res 2010; 44: 930–937.

  207. 207

    Lam P, Hong C-J, Tsai S-J . Association study of A2a adenosine receptor genetic polymorphism in panic disorder. Neurosci Lett 2005; 378: 98–101.

  208. 208

    Erhardt A, Lucae S, Unschuld PG, Ising M, Kern N, Salyakina D et al. Association of polymorphisms in P2RX7 and CaMKKb with anxiety disorders. J Affect Disord 2007; 101: 159–168.

  209. 209

    Roger S, Mei Z-Z, Baldwin JM, Dong L, Bradley H, Baldwin SA et al. Single nucleotide polymorphisms that were identified in affective mood disorders affect ATP-activated P2X7 receptor functions. J Psychiatr Res 2010; 44: 347–355.

  210. 210

    Kittner H, Franke H, Fischer W, Schultheis N, Krugel U, Illes P . Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology 2003; 28: 435–444.

  211. 211

    Barrera CM, Ruiz ZR, Dunlap WP . Uric acid: a participating factor in the symptoms of hyperactivity. Biol Psychiatry 1988; 24: 344–347.

  212. 212

    Özten E, Kesebir S, Eryılmaz G, Tarhan N, Karamustafalıoğlu O . Are uric acid plasma levels different between unipolar depression with and without adult attention deficit hyperactivity disorder? J Affect Disord 2015; 177: 114–117.

  213. 213

    Ioannidis K, Chamberlain SR, Müller U . Ostracising caffeine from the pharmacological arsenal for attention-deficit hyperactivity disorder—was this a correct decision? A literature review. J Psychopharmacol 2014; 28: 830–836.

  214. 214

    Critchley HD, Elliott R, Mathias CJ, Dolan RJ . Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 2000; 20: 3033–3040.

  215. 215

    Barry RJ, Clarke AR, Johnstone SJ, Brown CR, Bruggemann JM, van Rijbroek I . Caffeine effects on resting-state arousal in children. Int J Psychophysiol 2009; 73: 355–361.

  216. 216

    Barry RJ, Clarke AR, McCarthy R, Selikowitz M, MacDonald B, Dupuy FE . Caffeine effects on resting-state electrodermal levels in AD/HD suggest an anomalous arousal mechanism. Biol Psychol 2012; 89: 606–608.

  217. 217

    Boeck CR, Marques VB, Valvassori SS, Constantino LC, Rosa DVF, Lima FF et al. Early long-term exposure with caffeine induces cross-sensitization to methylphenidate with involvement of DARPP-32 in adulthood of rats. Neurochem Int 2009; 55: 318–322.

  218. 218

    Prediger RDS, Fernandes D, Takahashi RN . Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav Brain Res 2005; 159: 197–205.

  219. 219

    Pires VA, Pamplona FA, Pandolfo P, Fernandes D, Prediger RDS, Takahashi RN . Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder. Behav Pharmacol 2009; 20: 134–145.

  220. 220

    Pamplona FA, Pandolfo P, Savoldi R, Prediger RDS, Takahashi RN . Environmental enrichment improves cognitive deficits in spontaneously hypertensive rats (SHR): relevance for attention deficit/hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 1153–1160.

  221. 221

    Pandolfo P, Machado NJ, Köfalvi A, Takahashi RN, Cunha RA . Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur Neuropsychopharmacol 2013; 23: 317–328.

  222. 222

    Mioranzza S, Botton PHS, Costa MS, Espinosa J, Kazlauckas V, Ardais AP et al. Adenosine A1 receptors are modified by acute treatment with methylphenidate in adult mice. Brain Res 2010; 1357: 62–69.

  223. 223

    Napolitano F, Bonito-Oliva A, Federici M, Carta M, Errico F, Magara S et al. Role of aberrant striatal dopamine D1 receptor/cAMP/protein kinase A/DARPP32 signaling in the paradoxical calming effect of amphetamine. J Neurosci 2010; 30: 11043–11056.

  224. 224

    Masuo Y, Ishido M, Morita M, Sawa H, Nagashima K, Niki E . Behavioural characteristics and gene expression in the hyperactive wiggling (Wig) rat. Eur J Neurosci 2007; 25: 3659–3666.

  225. 225

    Janik P, Berdyński M, Safranow K, Żekanowski C . Association of ADORA1 rs2228079 and ADORA2A rs5751876 polymorphisms with Gilles de la Tourette Syndrome in the Polish population. PLoS ONE 2015; 10: e0136754.

  226. 226

    Molero Y, Gumpert C, Serlachius E, Lichtenstein P, Walum H, Johansson D et al. A study of the possible association between adenosine A2A receptor gene polymorphisms and attention-deficit hyperactivity disorder traits. Genes Brain Behav 2013; 12: 305–310.

  227. 227

    Glaser T, De Oliveira SLB, Cheffer A, Beco R, Martins P, Fornazari M et al. Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS ONE 2014; 9: e96281.

  228. 228

    Molteni R, Calabrese F, Bedogni F, Tongiorgi E, Fumagalli F, Racagni G et al. Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Int J Neuropsychopharmacol 2006; 9: 307–317.

  229. 229

    Rigucci S, Serafini G, Pompili M, Kotzalidis GD, Tatarelli R . Anatomical and functional correlates in major depressive disorder: the contribution of neuroimaging studies. World J Biol Psychiatry 2010; 11: 165–180.

  230. 230

    van Os J, Kapur S . Schizophrenia. Lancet 2009; 374: 635–645.

  231. 231

    Arnold SE, Ruscheinsky DD, Han LY . Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 1997; 42: 639–647.

  232. 232

    Fukuda T, Yanagi S . Psychiatric behaviors associated with cytoskeletal defects in radial neuronal migration. Cell Mol Life Sci 2017; doi: 10.1007/s00018-017-2539-4; e-pub ahead of print 17 May 2017.

  233. 233

    Oliveira SLB, Trujillo CA, Negraes PD, Ulrich H . Effects of ATP and NGF on proliferation and migration of neural precursor cells. Neurochem Res 2015; 40: 1849–1857.

  234. 234

    Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao W-N et al. Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci USA 2017; 114: E4462–E4471.

  235. 235

    Jeon SJ, Rhee SY, Ryu JH, Cheong JH, Kwon K, Yang S-I et al. Activation of adenosine A2A receptor up-regulates BDNF expression in rat primary cortical neurons. Neurochem Res 2011; 36: 2259–2269.

  236. 236

    Miras-Portugal MT, Gomez-Villafuertes R, Gualix J, Diaz-Hernandez JI, Artalejo AR, Ortega F et al. Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology 2016; 104: 243–254.

  237. 237

    Chen W-C, Lai Y-S, Lin S-H, Lu K-H, Lin Y-E, Panyod S et al. Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. J Ethnopharmacol 2016; 182: 190–199.

  238. 238

    Queiroz AIG, de Araújo MM, da Silva Araújo T, de Souza GC, Cavalcante LM, de Jesus Souza Machado M et al. GBR 12909 administration as an animal model of bipolar mania: time course of behavioral, brain oxidative alterations and effect of mood stabilizing drugs. Metab Brain Dis 2015; 30: 1207–1215.

  239. 239

    Parpura V, Schousboe A, Verkhratsky A (eds). Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain. Springer: New York, 2014.

  240. 240

    Wen Z, Christian KM, Song H, Ming G . Modeling psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol 2016; 36: 118–127.

Download references

Acknowledgements

HU acknowledges grant support from the Brazilian funding agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation, FAPESP Proj. Nr. 2012/50880-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for fellowship support. AC, ICN and YN thank FAPESP for post-doctoral fellowships (FAPESP Proj. Nr. 2013/02293-5, 2015/18730-0 and 2015/14343-2, respectively). JC-V thanks CNPq for fellowship support. The doctoral thesis research of ARGC and MCBG is supported by fellowships from CNPq.

Author information

Correspondence to H Ulrich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheffer, A., Castillo, A., Corrêa-Velloso, J. et al. Purinergic system in psychiatric diseases. Mol Psychiatry 23, 94–106 (2018) doi:10.1038/mp.2017.188

Download citation

Further reading