Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hippocampal subfield volumes in mood disorders

Abstract

Volume reduction and shape abnormality of the hippocampus have been associated with mood disorders. However, the hippocampus is not a uniform structure and consists of several subfields, such as the cornu ammonis (CA) subfields CA1–4, the dentate gyrus (DG) including a granule cell layer (GCL) and a molecular layer (ML) that continuously crosses adjacent subiculum (Sub) and CA fields. It is known that cellular and molecular mechanisms associated with mood disorders may be localized to specific hippocampal subfields. Thus, it is necessary to investigate the link between the in vivo hippocampal subfield volumes and specific mood disorders, such as bipolar disorder (BD) and major depressive disorder (MDD). In the present study, we used a state-of-the-art hippocampal segmentation approach, and we found that patients with BD had reduced volumes of hippocampal subfields, specifically in the left CA4, GCL, ML and both sides of the hippocampal tail, compared with healthy subjects and patients with MDD. The volume reduction was especially severe in patients with bipolar I disorder (BD-I). We also demonstrated that hippocampal subfield volume reduction was associated with the progression of the illness. For patients with BD-I, the volumes of the right CA1, ML and Sub decreased as the illness duration increased, and the volumes of both sides of the CA2/3, CA4 and hippocampal tail had negative correlations with the number of manic episodes. These results indicated that among the mood disorders the hippocampal subfields were more affected in BD-I compared with BD-II and MDD, and manic episodes had focused progressive effect on the CA2/3 and CA4 and hippocampal tail.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RMA, Petukhova M et al. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry 2007; 64: 543–552.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murray CJL, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2197–2223.

    Article  PubMed  Google Scholar 

  3. Mathers CD, Iburg KM, Begg S . Adjusting for dependent comorbidity in the calculation of healthy life expectancy. Popul Health Metr 2006; 4: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gardner HH, Kleinman NL, Brook RA, Rajagopalan K, Brizee TJ, Smeeding JE . The economic impact of bipolar disorder in an employed population from an employer perspective. J Clin Psychiatry 2006; 67: 1209–1218.

    Article  PubMed  Google Scholar 

  5. Crump C, Sundquist K, Winkleby MA, Sundquist J . Comorbidities and mortality in bipolar disorder: a Swedish national cohort study. JAMA psychiatry 2013; 70: 931–939.

    Article  PubMed  Google Scholar 

  6. Webb RT, Lichtenstein P, Larsson H, Geddes JR, Fazel S . Suicide, hospital-presenting suicide attempts, and criminality in bipolar disorder: examination of risk for multiple adverse outcomes. J Clin Psychiatry 2014; 75: e809–e816.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Passos IC, Mwangi B, Cao B, Hamilton JE, Wu M-J, Zhang XY et al. Identifying a clinical signature of suicidality among patients with mood disorders: a pilot study using a machine learning approach. J Affect Disord 2016; 193: 109–116.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eichenbaum H . A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 2000; 1: 41–50.

    Article  CAS  PubMed  Google Scholar 

  9. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA . A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011; 12: 585–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu M-J, Passos IC, Bauer IE, Lavagnino L, Cao B, Zunta-Soares GB et al. Individualized identification of euthymic bipolar disorder using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and machine learning. J Affect Disord 2016; 192: 219–225.

    Article  PubMed  Google Scholar 

  11. Altshuler LL, Bartzokis G, Grieder T, Curran J, Jimenez T, Leight K et al. An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 2000; 48: 147–162.

    Article  CAS  PubMed  Google Scholar 

  12. Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 2003; 53: 906–913.

    Article  PubMed  Google Scholar 

  13. Brambilla P, Harenski K, Nicoletti M, Sassi RB, Mallinger AG, Frank E et al. MRI investigation of temporal lobe structures in bipolar patients. J Psychiatr Res 37: 287–295.

    Article  PubMed  Google Scholar 

  14. Bearden CE, Thompson PM, Dutton RA, Frey BN, Peluso MAM, Nicoletti M et al. Three-dimensional mapping of hippocampal anatomy in unmedicated and lithium-treated patients with bipolar disorder. Neuropsychopharmacology 2008; 33: 1229–1238.

    Article  CAS  PubMed  Google Scholar 

  15. Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JH, Gore JC et al. Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry 2003; 60: 1201–1208.

    Article  PubMed  Google Scholar 

  16. Cao B, Bauer IE, Sharma AN, Mwangi B, Frazier T, Lavagnino L et al. Reduced hippocampus volume and memory performance in bipolar disorder patients carrying the BDNF val66met met allele. J Affect Disord 2016; 198: 198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Javadapour A, Malhi GS, Ivanovski B, Chen X, Wen W, Sachdev P . Hippocampal volumes in adults with bipolar disorder. J Neuropsychiatry Clin Neurosci 2010; 22: 55–62.

    Article  PubMed  Google Scholar 

  18. van Erp TGM, Thompson PM, Kieseppä T, Bearden CE, Marino AC, Hoftman GD et al. Hippocampal morphology in lithium and non-lithium-treated bipolar I disorder patients, non-bipolar co-twins, and control twins. Hum Brain Mapp 2012; 33: 501–510.

    Article  PubMed  Google Scholar 

  19. Hajek T, Kopecek M, Höschl C, Alda M . Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci 2012; 37: 333–343.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 2011; 68: 675–690.

    Article  PubMed  Google Scholar 

  21. Wise T, Radua J, Via E, Cardoner N, Abe O, Adams TM et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol Psychiatry 2016; e-pub ahead of print 24 May 2016. doi: 10.1038/mp.2016.72.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hibar DP, Westlye LT, van Erp TGM, Rasmussen J, Leonardo CD, Faskowitz J et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry 2016; 21: 1710–1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao B, Passos IC, Mwangi B, Bauer IE, Zunta-Soares GB, Kapczinski F et al. Hippocampal volume and verbal memory performance in late-stage bipolar disorder. J Psychiatr Res 2016; 73: 102–107.

    Article  PubMed  Google Scholar 

  24. McKinnon MC, Yucel K, Nazarov A, MacQueen GM . A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 2009; 34: 41–54.

    PubMed  PubMed Central  Google Scholar 

  25. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 2004; 56: 640–650.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Eastwood SL, Harrison PJ . Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 2000; 5: 425–432.

    Article  CAS  PubMed  Google Scholar 

  27. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF . Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 2004; 9: 609–620, 544.

    Article  CAS  PubMed  Google Scholar 

  28. Ballmaier M, Narr KL, Toga AW, Elderkin-Thompson V, Thompson PM, Hamilton L et al. Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. Am J Psychiatry 2008; 165: 229–237.

    Article  PubMed  Google Scholar 

  29. Bearden CE, Soares JC, Klunder AD, Nicoletti M, Dierschke N, Hayashi KM et al. Three-Dimensional Mapping of Hippocampal Anatomy in Adolescents With Bipolar Disorder. J Am Acad Child Adolesc Psychiatry 2008; 47: 515–525.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 2015; 77: 285–294.

    Article  PubMed  Google Scholar 

  31. Haukvik UK, Westlye LT, Mørch-Johnsen L, Jørgensen KN, Lange EH, Dale AM et al. In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biol Psychiatry 2015; 77: 581–588.

    Article  PubMed  Google Scholar 

  32. Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 2009; 19: 549–557.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 2015; 115: 117–137.

    Article  PubMed  Google Scholar 

  34. Ho NF, Iglesias JE, Sum MY, Kuswanto CN, Sitoh YY, De Souza J et al. Progression from selective to general involvement of hippocampal subfields in schizophrenia. Mol Psychiatry 2016; 22: 142–152.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hamilton M . A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Young RC, Biggs JT, Ziegler VE, Meyer DA . A rating scale for mania: Reliability, validity and sensitivity. Br J Psychiatry 1978; 133: 429–435.

    Article  CAS  PubMed  Google Scholar 

  37. Dale AM, Fischl B, Sereno MI . Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999; 9: 179–194.

    Article  CAS  PubMed  Google Scholar 

  38. Jovicich J, Czanner S, Greve D, Haley E, Van Der Kouwe A, Gollub R et al. Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. Neuroimage 2006; 30: 436–443.

    Article  PubMed  Google Scholar 

  39. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341–355.

    Article  CAS  PubMed  Google Scholar 

  40. Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry 2016; e-pub ahead of print 3 May 2016. doi: 10.1038/mp.2016.60.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schmaal L, Veltman DJ, van Erp TGM, Sämann PG, Frodl T, Jahanshad N et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry 2015; 21: 806–812.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Strakowski SM, DelBello MP, Zimmerman ME, Getz GE, Mills NP, Ret J et al. Ventricular and periventricular structural volumes in first- versus multiple-episode bipolar disorder. Am J Psychiatry 2002; 159: 1841–1847.

    Article  PubMed  Google Scholar 

  43. Martínez-Arán A, Vieta E, Reinares M, Colom F, Torrent C, Sánchez-Moreno J et al. Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder. Am J Psychiatry 2004; 161: 262–270.

    Article  PubMed  Google Scholar 

  44. Cao B, Stanley JA, Selvaraj S, Mwangi B, Passos IC, Zunta-Soares G et al. Evidence of altered membrane phospholipid metabolism in the anterior cingulate cortex and striatum of patients with bipolar disorder I: a multi-voxel 1H MRS study. J Psychiatr Res 2016; 81: 48–55.

    Article  PubMed  Google Scholar 

  45. Lavagnino L, Cao B, Mwangi B, Wu M-J, Sanches M, Zunta-Soares GB et al. Changes in the corpus callosum in women with late-stage bipolar disorder. Acta Psychiatr Scand 2015; 131: 458–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH . Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  47. Drew MR, Hen R . Adult hippocampal neurogenesis as target for the treatment of depression. CNS Neurol Disord Drug Targets 2007; 6: 205–218.

    Article  CAS  PubMed  Google Scholar 

  48. McMahon HT, Missler M, Li C, Südhof TC . Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 1995; 83: 111–119.

    Article  CAS  PubMed  Google Scholar 

  49. Ray MT, Weickert CS, Wyatt E, Webster MJ . Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci 2011; 36: 195–203.

    Article  PubMed Central  Google Scholar 

  50. Binder DK, Scharfman HE . Brain-derived neurotrophic factor. Growth Factors 2004; 22: 123–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeni CP, Mwangi B, Cao B, Hasan KM, Walss-Bass C, Zunta-Soares G et al. Interaction between BDNF rs6265 Met allele and low family cohesion is associated with smaller left hippocampal volume in pediatric bipolar disorder. J Affect Disord 2016; 189: 94–97.

    Article  CAS  PubMed  Google Scholar 

  52. D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T . A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374: 719–723.

    Article  PubMed  Google Scholar 

  53. Fatemi SH, Earle Ja, McMenomy T . Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 2000; 5: 654–663, 571.

    Article  CAS  PubMed  Google Scholar 

  54. Passos IC, Mwangi B, Vieta E, Berk M, Kapczinski F . Areas of controversy in neuroprogression in bipolar disorder. Acta Psychiatr Scand 2016; 134: 91–103.

    Article  CAS  PubMed  Google Scholar 

  55. O’Mara S . The subiculum: What it does, what it might do, and what neuroanatomy has yet to tell us. J Anat 2005; 207: 271–282.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Freund TF, Buzsáki G . Interneurons of the hippocampus. Hippocampus 1996; 6: 347–470.

    Article  CAS  PubMed  Google Scholar 

  57. Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK, Menji HK et al. Lithium-induced increase in human brain grey matter. Lancet (London, England) 2000; 356: 1241–1242.

    Article  CAS  Google Scholar 

  58. Bearden CE, Thompson PM, Dalwani M, Hayashi KM, Lee AD, Nicoletti M et al. Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biol Psychiatry 2007; 62: 7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mwangi B, Wu M-J, Cao B, Passos IC, Lavagnino L, Keser Z et al. Individualized Prediction and Clinical Staging of Bipolar Disorders Using Neuroanatomical Biomarkers. Biol Psychiatry Cogn Neurosci Neuroimaging 2016; 1: 186–194.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Abé C, Ekman C-J, Sellgren C, Petrovic P, Ingvar M, Landén M . Manic episodes are related to changes in frontal cortex: a longitudinal neuroimaging study of bipolar disorder 1. Brain 2015; 138: 3440–3448.

    Article  PubMed  Google Scholar 

  61. Lan MJ, Chhetry BT, Oquendo MA, Sublette ME, Sullivan G, Mann JJ et al. Cortical thickness differences between bipolar depression and major depressive disorder. Bipolar Disord 2014; 16: 378–388.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Simonetti A, Sani G, Dacquino C, Piras F, De Rossi P, Caltagirone C et al. Hippocampal subfield volumes in short- and long-term lithium-treated patients with bipolar I disorder. Bipolar Disord 2016; 18: 352–362.

    Article  CAS  PubMed  Google Scholar 

  63. Miskowiak KW, Vinberg M, Macoveanu J, Ehrenreich H, Køster N, Inkster B et al. Effects of erythropoietin on hippocampal volume and memory in mood disorders. Biol Psychiatry 2014; 78: 270–277.

    Article  PubMed  Google Scholar 

  64. Passos IC, Mwangi B, Kapczinski F . Big data analytics and machine learning: 2015 and beyond. The Lancet Psychiatry 2016; 3: 13–15.

    Article  PubMed  Google Scholar 

  65. Iniesta R, Stahl D, McGuffin P . Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med 2016; 46: 2455–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giakoumatos CI, Nanda P, Mathew IT, Tandon N, Shah J, Bishop JR et al. Effects of lithium on cortical thickness and hippocampal subfield volumes in psychotic bipolar disorder. J Psychiatr Res 2015; 61: 180–187.

    Article  CAS  PubMed  Google Scholar 

  67. Caetano SC, Hatch JP, Brambilla P, Sassi RB, Nicoletti M, Mallinger AG et al. Anatomical MRI study of hippocampus and amygdala in patients with current and remitted major depression. Psychiatry Res 2004; 132: 141–147.

    Article  PubMed  Google Scholar 

  68. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003; 100: 1387–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Monkul ES, Hatch JP, Nicoletti MA, Spence S, Brambilla P, Lacerda ALT et al. Fronto-limbic brain structures in suicidal and non-suicidal female patients with major depressive disorder. Mol Psychiatry 2006; 12: 360–366.

    Article  PubMed  Google Scholar 

  70. Sheline YI, Sanghavi M, Mintun MA, Gado MH . Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999; 19: 5034–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sheline YI, Gado MH, Kraemer HC . Untreated depression and hippocampal volume loss 34. AmJ Psychiatry 2003; 160: 1516–1518.

    Article  Google Scholar 

Download references

Acknowledgements

Supported in part by NIMH grant R01 085667, the Dunn Research Foundation and the Pat Rutherford, Jr. Endowed Chair in Psychiatry (Jair C Soares).

Author contributions

Dr Cao designed the study, processed, quality-controlled and analyzed the data, drafted the manuscript, and critically edited the draft of the manuscript. Dr Passos was involved in designing the study, drafted the manuscript, and critically edited the draft of the manuscript. Dr Mwangi was involved in designing the study, processed the data, and critically edited the draft of the manuscript. Dr Amaral-Silva implemented the pipeline of quality control and independently finished the quality control of the hippocampal subfield segmentation. Ms. Tannous independently did the quality control of the hippocampal subfield segmentation. Dr Wu partly processed the data and critically edited the draft of the manuscript. Dr Zunta-Soares coordinated the subject enrollment and data collection. Dr Soares supervised the study, provided financial and instrumental support, collected the data, and critically edited the draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Cao.

Ethics declarations

Competing interests

Dr Soares has received grants/research support from BMS, Forrest, J&J, Merck, Stanley Medical Research Institute, NIH and has been a speaker for Pfizer and Abbott. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, B., Passos, I., Mwangi, B. et al. Hippocampal subfield volumes in mood disorders. Mol Psychiatry 22, 1352–1358 (2017). https://doi.org/10.1038/mp.2016.262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.262

This article is cited by

Search

Quick links