Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association study of NMDA receptor coagonists in human cerebrospinal fluid and plasma

Subjects

Abstract

The N-methyl-d-aspartate receptor (NMDAR) coagonists glycine, d-serine and l-proline play crucial roles in NMDAR-dependent neurotransmission and are associated with a range of neuropsychiatric disorders. We conducted the first genome-wide association study of concentrations of these coagonists and their enantiomers in plasma and cerebrospinal fluid (CSF) of human subjects from the general population (N=414). Genetic variants at chromosome 22q11.2, located in and near PRODH (proline dehydrogenase), were associated with l-proline in plasma (β=0.29; P=6.38 × 10−10). The missense variant rs17279437 in the proline transporter SLC6A20 was associated with l-proline in CSF (β=0.28; P=9.68 × 10−9). Suggestive evidence of association was found for the d-serine plasma-CSF ratio at the d-amino-acid oxidase (DAO) gene (β=−0.28; P=9.08 × 10−8), whereas a variant in SRR (that encodes serine racemase and is associated with schizophrenia) constituted the most strongly associated locus for the l-serine to d-serine ratio in CSF. All these genes are highly expressed in rodent meninges and choroid plexus, anatomical regions relevant to CSF physiology. The enzymes and transporters they encode may be targeted to further construe the nature of NMDAR coagonist involvement in NMDAR gating. Furthermore, the highlighted genetic variants may be followed up in clinical populations, for example, schizophrenia and 22q11 deletion syndrome. Overall, this targeted metabolomics approach furthers the understanding of NMDAR coagonist concentration variability and sets the stage for non-targeted CSF metabolomics projects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Henneberger C, Papouin T, Oliet SH, Rusakov DA . Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010; 463: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 2012; 150: 633–646.

    Article  CAS  PubMed  Google Scholar 

  3. Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT et al. Glycine binding primes NMDA receptor internalization. Nature 2003; 422: 302–307.

    Article  CAS  PubMed  Google Scholar 

  4. Sakata K, Fukushima T, Minje L, Ogurusu T, Taira H, Mishina M et al. Modulation by L- and D-isoforms of amino acids of the L-glutamate response of N-methyl-D-aspartate receptors. Biochemistry 1999; 38: 10099–10106.

    Article  CAS  PubMed  Google Scholar 

  5. McBain CJ, Kleckner NW, Wyrick S, Dingledine R . Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 1989; 36: 556–565.

    CAS  PubMed  Google Scholar 

  6. Martin D, Ault B, Nadler JV . NMDA receptor-mediated depolarizing action of proline on CA1 pyramidal cells. Eur J Pharmacol 1992; 219: 59–66.

    Article  CAS  PubMed  Google Scholar 

  7. Henzi V, Reichling DB, Helm SW, MacDermott AB . L-proline activates glutamate and glycine receptors in cultured rat dorsal horn neurons. Mol Pharmacol 1992; 41: 793–801.

    CAS  PubMed  Google Scholar 

  8. Kleckner NW, Dingledine R . Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 1988; 241: 835–837.

    Article  CAS  PubMed  Google Scholar 

  9. Clelland CL, Read LL, Baraldi AN, Bart CP, Pappas CA, Panek LJ et al. Evidence for association of hyperprolinemia with schizophrenia and a measure of clinical outcome. Schizophr Res 2011; 131: 139–145.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jacquet H, Demily C, Houy E, Hecketsweiler B, Bou J, Raux G et al. Hyperprolinemia is a risk factor for schizoaffective disorder. Mol Psychiatry 2005; 10: 479–485.

    Article  CAS  PubMed  Google Scholar 

  11. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60: 572–576.

    Article  CAS  PubMed  Google Scholar 

  12. Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H et al. A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res 2007; 90: 41–51.

    Article  PubMed  Google Scholar 

  13. Frye MA, Tsai GE, Huggins T, Coyle JT, Post RM . Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatry 2007; 61: 162–166.

    Article  CAS  PubMed  Google Scholar 

  14. Luykx JJ, Bakker SC, van Boxmeer L, Vinkers CH, Smeenk HE, Visser WF et al. D-amino acid aberrations in cerebrospinal fluid and plasma of smokers. Neuropsychopharmacology 2013; 38: 2019–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brouwer A, Luykx JJ, van Boxmeer L, Bakker SC, Kahn RS . NMDA-receptor coagonists in serum, plasma, and cerebrospinal fluid of schizophrenia patients: a meta-analysis of case-control studies. Neurosci Biobehav Rev 2013; 37: 1587–1596.

    Article  CAS  PubMed  Google Scholar 

  16. Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen psychiatry 1999; 56: 21–27.

    Article  CAS  PubMed  Google Scholar 

  17. Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC . High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry 2004; 55: 165–171.

    Article  CAS  PubMed  Google Scholar 

  18. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D . Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 1996; 169: 610–617.

    Article  CAS  PubMed  Google Scholar 

  19. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M . Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56: 29–36.

    Article  CAS  PubMed  Google Scholar 

  20. Tsai G, Yang P, Chung LC, Lange N, Coyle JT . D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 1998; 44: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  21. Tsai GE, Yang P, Chang YC, Chong MY . D-alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 2006; 59: 230–234.

    Article  CAS  PubMed  Google Scholar 

  22. Labrie V, Wong AH, Roder JC . Contributions of the D-serine pathway to schizophrenia. Neuropharmacology 2012; 62: 1484–1503.

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann SG, Meuret AE, Smits JA, Simon NM, Pollack MH, Eisenmenger K et al. Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Arch Gen Psychiatry 2006; 63: 298–304.

    Article  CAS  PubMed  Google Scholar 

  24. Guastella AJ, Richardson R, Lovibond PF, Rapee RM, Gaston JE, Mitchell P et al. A randomized controlled trial of D-cycloserine enhancement of exposure therapy for social anxiety disorder. Biol Psychiatry 2008; 63: 544–549.

    Article  CAS  PubMed  Google Scholar 

  25. Otto MW, Tolin DF, Simon NM, Pearlson GD, Basden S, Meunier SA et al. Efficacy of d-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol Psychiatry 2010; 67: 365–370.

    Article  CAS  PubMed  Google Scholar 

  26. Wilhelm S, Buhlmann U, Tolin DF, Meunier SA, Pearlson GD, Reese HE et al. Augmentation of behavior therapy with D-cycloserine for obsessive-compulsive disorder. Am J Psychiatry 2008; 165: 335–341.

    Article  PubMed  Google Scholar 

  27. Kushner MG, Kim SW, Donahue C, Thuras P, Adson D, Kotlyar M et al. D-cycloserine augmented exposure therapy for obsessive-compulsive disorder. Biol Psychiatry 2007; 62: 835–838.

    Article  CAS  PubMed  Google Scholar 

  28. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.

    Article  PubMed Central  Google Scholar 

  29. Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikainen LP et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genet 2012; 44: 269–276.

    Article  CAS  PubMed  Google Scholar 

  30. Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K et al. A genome-wide association study of metabolic traits in human urine. Nature Genet 2011; 43: 565–569.

    Article  CAS  PubMed  Google Scholar 

  31. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 2011; 69: 893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fuchs SA, Berger R, de Koning TJ . D-serine: the right or wrong isoform? Brain Res 2011; 1401: 104–117.

    Article  CAS  PubMed  Google Scholar 

  33. Ma TM, Abazyan S, Abazyan B, Nomura J, Yang C, Seshadri S et al. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 2012; 18: 557–567.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wolosker H, Blackshaw S, Snyder SH . Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96: 13409–13414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD et al. Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 1999; 96: 721–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boks MP, Rietkerk T, van de Beek MH, Sommer IE, de Koning TJ, Kahn RS . Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. Eur Neuropsychopharmacol 2007; 17: 567–572.

    Article  CAS  PubMed  Google Scholar 

  37. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17: 448–453.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Luykx JJ, Vinkers CH, Bakker SC, Visser WF, van Boxmeer L, Strengman E et al. A common variant in ERBB4 regulates GABA concentrations in human cerebrospinal fluid. Neuropsychopharmacology 2012; 37: 2088–2092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luykx JJ, Bakker SC, Lentjes E, Neeleman M, Strengman E, Mentink L et al. Genome-wide association study of monoamine metabolite levels in human cerebrospinal fluid. Mol Psychiatry 2014; 19: 228–234.

    Article  CAS  PubMed  Google Scholar 

  40. Visser WF, Verhoeven-Duif NM, Ophoff R, Bakker S, Klomp LW, Berger R et al. A sensitive and simple ultra-high-performance-liquid chromatography-tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. J Chromatogr A 1218: 7130–7136.

    Article  CAS  PubMed  Google Scholar 

  41. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Browning SR, Browning BL . Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 2007; 81: 1084–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR . Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature Genet 2012; 44: 955–959.

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR . MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 2010; 34: 816–834.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Petersen AK, Krumsiek J, Wagele B, Theis FJ, Wichmann HE, Gieger C et al. On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies. BMC Bioinformatics 2012; 13: 120.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gieger C, Geistlinger L, Altmaier E, Hrabe de Angelis M, Kronenberg F, Meitinger T et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 2008; 4: e1000282.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J et al. An atlas of genetic influences on human blood metabolites. Nature Genet 2014; 46: 543–550.

    Article  CAS  PubMed  Google Scholar 

  48. Nicholson G, Rantalainen M, Li JV, Maher AD, Malmodin D, Ahmadi KR et al. A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genet 2011; 7: e1002270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011; 477: 54–60.

    Article  CAS  PubMed  Google Scholar 

  50. Guilmatre A, Legallic S, Steel G, Willis A, Di Rosa G, Goldenberg A et al. Type I hyperprolinemia: genotype/phenotype correlations. Hum Mutat 2010; 31: 961–965.

    Article  CAS  PubMed  Google Scholar 

  51. Bender HU, Almashanu S, Steel G, Hu CA, Lin WW, Willis A et al. Functional consequences of PRODH missense mutations. Am J Hum Genet 2005; 76: 409–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 2011; 9: e1000582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tanner JJ . Structural biology of proline catabolism. Amino Acids 2008; 35: 719–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A et al. BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol 2006; 4: e86.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Visel A, Thaller C, Eichele G . GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res 2004; 32: D552–D556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Broer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H et al. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 2008; 118: 3881–3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A . The presence of free D-aspartic acid in rodents and man. Biochem Biophys Res Commun 1986; 141: 27–32.

    Article  CAS  PubMed  Google Scholar 

  58. Burnet PW, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M et al. D-amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry 2008; 13: 658–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Miranda J, Santoro A, Engelender S, Wolosker H . Human serine racemase: moleular cloning, genomic organization and functional analysis. Gene 2000; 256: 183–188.

    Article  CAS  PubMed  Google Scholar 

  60. Raux G, Bumsel E, Hecketsweiler B, van Amelsvoort T, Zinkstok J, Manouvrier-Hanu S et al. Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum Mol Genet 2007; 16: 83–91.

    Article  CAS  PubMed  Google Scholar 

  61. Vorstman JA, Morcus ME, Duijff SN, Klaassen PW, Heineman-de Boer JA, Beemer FA et al. The 22q11.2 deletion in children: high rate of autistic disorders and early onset of psychotic symptoms. J Am Acad Child Adolesc Psychiatry 2006; 45: 1104–1113.

    Article  PubMed  Google Scholar 

  62. Sullivan PF, Daly MJ, O'Donovan M . Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oresic M, Tang J, Seppanen-Laakso T, Mattila I, Saarni SE, Saarni SI et al. Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 2011; 3: 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank drs. JTA Knape, P Vaessen and P Keijzers for their valuable assistance in developing our CSF sampling protocol in the operating rooms and conducting the CSF samplings. We thank K van Eijk and J van Setten for their assistance in developing genetic quality control standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Ophoff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luykx, J., Bakker, S., Visser, W. et al. Genome-wide association study of NMDA receptor coagonists in human cerebrospinal fluid and plasma. Mol Psychiatry 20, 1557–1564 (2015). https://doi.org/10.1038/mp.2014.190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.190

This article is cited by

Search

Quick links