Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia


Schizophrenia patients exhibit increased hippocampal activity that is correlated with positive symptoms. Although the cause of this hippocampal hyperactivity has not been demonstrated, it likely involves a decrease in GABAergic signaling. Thus, we posit that restoring GABAergic function may provide a novel therapeutic approach for the treatment of schizophrenia. It has been demonstrated that transplanted GABAergic precursor cells from the medial ganglionic eminence (MGE) can migrate and differentiate into mature interneurons. Here, we demonstrate that ventral hippocampal MGE transplants can restore hippocampal function and normalize downstream dopamine neuron activity in a rodent model of schizophrenia. Furthermore, MGE transplants also reverse the hyper-responsive locomotor response to amphetamine. Taken together, these data demonstrate that restoring interneuron function reverses neurophysiological and behavioral deficits in a rodent model of schizophrenia and moreover, demonstrate the feasibility of a neuronal transplant procedure as a potential novel therapeutic approach for the treatment of schizophrenia.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4


  1. Laruelle M, Abi-Dargham A . Dopamine as the wind of psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 1999; 13: 358–371.

    CAS  Article  Google Scholar 

  2. Abi-Dargham A . Do we still believe in the dopamine hypothesis? New data bring new evidence. Int J Neuropsychopharmacol 2004; 7 (Suppl 1): S1–S5.

    CAS  Article  Google Scholar 

  3. Lodge DJ, Grace AA . Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci 2007; 27: 11424–11430.

    CAS  Article  Google Scholar 

  4. Lahti AC, Weiler MA, Holcomb HH, Tamminga CA, Carpenter WT, McMahon R . Correlations between rCBF and symptoms in two independent cohorts of drug-free patients with schizophrenia. Neuropsychopharmacology 2006; 31: 221–230.

    Article  Google Scholar 

  5. Medoff DR, Holcomb HH, Lahti AC, Tamminga CA . Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 2001; 11: 543–550.

    CAS  Article  Google Scholar 

  6. Harrison PJ . The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004; 174: 151–162.

    CAS  Article  Google Scholar 

  7. Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D et al. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch Gen Psychiatry 2009; 66: 938–946.

    Article  Google Scholar 

  8. Perez SM, Shah A, Asher A, Lodge DJ . Hippocampal deep brain stimulation reverses physiological and behavioral deficits in a rodent model of schizophrenia. Int J Neuropsychopharmacol 2012; 16: 1331–1339.

    Article  Google Scholar 

  9. Shah A, Lodge DJ . A loss of hippocampal perineuronal nets produces deficits in dopamine system function: relevance to the positive symptoms of schizophrenia. Transl Psychiatry 2013; 3: e215.

    CAS  Article  Google Scholar 

  10. Lewis DA, Hashimoto T, Volk DW . Cortical inhibitory neurons and schizophrenia. Nat Rev Neuroscience 2005; 6: 312–324.

    CAS  Article  Google Scholar 

  11. Lodge DJ, Behrens MM, Grace AA . A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci 2009; 29: 2344–2354.

    CAS  Article  Google Scholar 

  12. Ducharme G, Lowe GC, Goutagny R, Williams S . Early alterations in hippocampal circuitry and theta rhythm generation in a mouse model of prenatal infection: implications for schizophrenia. PLoS One 2012; 7: e29754.

    CAS  Article  Google Scholar 

  13. Gill KM, Lodge DJ, Cook JM, Aras S, Grace AA . A novel α5GABAAR-positive allosteric modulator reverses hyperactivation of the dopamine system in the MAM model of schizophrenia. Neuropsychopharmacology 2011; 36: 1903–1911.

    CAS  Article  Google Scholar 

  14. Lodge DJ, Grace AA . Gestational methylazoxymethanol acetate administration: A developmental disruption model of schizophrenia. Behav Brain Res 2009; 7 204: 306–312.

    Article  Google Scholar 

  15. Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY, Alfaro-Cervello C et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci USA 2009; 106: 15472–15477.

    CAS  Article  Google Scholar 

  16. Martinez-Cerdeno V, Noctor SC, Espinosa A, Ariza J, Parker P, Orasji S et al. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned Rats. Cell Stem Cell 2010; 6: 238–250.

    CAS  Article  Google Scholar 

  17. Tanaka DH, Toriumi K, Kubo K, Nabeshima T, Nakajima K . GABAergic precursor transplantation into the prefrontal cortex prevents phencyclidine-induced cognitive deficits. J Neurosci 2011; 31: 14116–14125.

    CAS  Article  Google Scholar 

  18. Calcagnotto ME, Zipancic I, Piquer-Gil M, Mello LE, Alvarez-Dolado M . Grafting of GABAergic precursors rescues deficits in hippocampal inhibition. Epilepsia 2010; 51 (SUPPL 3): 66–70.

    CAS  Article  Google Scholar 

  19. Alvarez-Dolado M, Calcagnotto ME, Karkar KM, Southwell DG, Jones-Davis DM, Estrada RC et al. Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain. J Neurosci 2006; 26: 7380–7389.

    CAS  Article  Google Scholar 

  20. Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A . Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 1999; 2: 461–466.

    CAS  Article  Google Scholar 

  21. Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA . A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry 2006; 60: 253–264.

    CAS  Article  Google Scholar 

  22. Ranck JB Jr . Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 1973; 41: 461–531.

    Article  Google Scholar 

  23. Van Der Meer MAA, Redish AD . Theta phase precession in rat ventral striatum links place and reward information. J Neurosci 2011; 31: 2843–2854.

    CAS  Article  Google Scholar 

  24. Grace AA, Bunney BS . Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—1. Identification and characterization. Neuroscience 1983; 10: 301–315.

    CAS  Article  Google Scholar 

  25. Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1998; 1: 318–323.

    CAS  Article  Google Scholar 

  26. Gonzalez-Burgos G, Hashimoto T, Lewis DA . Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 2010; 12: 335–344.

    Article  Google Scholar 

  27. Perry TL, Kish SJ, Buchanan J, Hansen S . Gamma-aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet 1979; 1: 237–239.

    CAS  Article  Google Scholar 

  28. Schobel SA, Kelly MA, Corcoran CM, Van Heertum K, Seckinger R, Goetz R et al. Anterior hippocampal and orbitofrontal cortical structural brain abnormalities in association with cognitive deficits in schizophrenia. Schizophrenia Res 2009; 114: 110–118.

    Article  Google Scholar 

  29. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    CAS  Article  Google Scholar 

  30. Curley AA, Eggan SM, Lazarus MS, Huang ZJ, Volk DW, Lewis DA . Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: Implications for schizophrenia. Neurobiol Dis 2013; 50: 179–186.

    CAS  Article  Google Scholar 

  31. Lodge DJ, Grace AA . Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 2011; 32: 507–513.

    CAS  Article  Google Scholar 

  32. Grace AA, Floresco SB, Goto Y, Lodge DJ . Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 2007; 30: 220–227.

    CAS  Article  Google Scholar 

  33. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, De Bartolomeis A et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997; 94: 2569–2574.

    CAS  Article  Google Scholar 

  34. Swerdlow NR, Halim N, Hanlon FM, Platten A, Auerbach PP . Lesion size and amphetamine hyperlocomotion after neonatal ventral hippocampal lesions: more is less. Brain Res Bull 2001; 55: 71–77.

    CAS  Article  Google Scholar 

  35. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates. Academic Press: Sydney, 1986.

    Google Scholar 

Download references


This work was supported by a mental health research grant from the Hogg Foundation and an R01 (MH090067) and F31 (MH098564) from the NIH. Representative images were generated in the Core Optical Imaging Facility which is supported by UTHSCSA, NIH-NCI P30 CA54174 (CTRC at UTHSCSA) and NIH-NIA P01AG19316.

Author information

Authors and Affiliations


Corresponding author

Correspondence to D J Lodge.

Ethics declarations

Competing interests

Dr Lodge reports receiving consulting fees from Dey Pharmaceuticals, whereas Perez declares no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perez, S., Lodge, D. Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia. Mol Psychiatry 18, 1193–1198 (2013).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • cell transplant
  • dopamine
  • interneuron
  • hippocampus
  • schizophrenia

Further reading


Quick links