Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants

Abstract

After decades of halting progress, recent large genome-wide association studies (GWAS) are finally shining light on the genetic architecture of schizophrenia. The picture emerging is one of sobering complexity, involving large numbers of risk alleles across the entire allelic spectrum. The aims of this article are to summarize the key genetic findings to date and to compare and contrast methods for identifying additional risk alleles, including GWAS, targeted genotyping and sequencing. A further aim is to consider the challenges and opportunities involved in determining the functional basis of genetic associations, for instance using functional genomics, cellular models, animal models and imaging genetics. We conclude that diverse approaches will be required to identify and functionally characterize the full spectrum of risk variants for schizophrenia. These efforts should adhere to the stringent standards of statistical association developed for GWAS and are likely to entail very large sample sizes. Nonetheless, now more than any previous time, there are reasons for optimism and the ultimate goal of personalized interventions and therapeutics, although still distant, no longer seems unattainable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Sorensen HJ, Mortensen EL, Schiffman J, Reinisch JM, Maeda J, Mednick SA . Early developmental milestones and risk of schizophrenia: a 45-year follow-up of the Copenhagen Perinatal Cohort. Schizophrenia Res 2010; 118: 41–47.

    Article  Google Scholar 

  2. Woodberry KA, Giuliano AJ, Seidman LJ . Premorbid IQ in schizophrenia: a meta-analytic review. Am J Psychiatry 2008; 165: 579–587.

    Article  PubMed  Google Scholar 

  3. McGorry PD, Yung AR, Bechdolf A, Amminger P . Back to the future: predicting and reshaping the course of psychotic disorder. Arch Gen Psychiatry 2008; 65: 25–27.

    Article  PubMed  Google Scholar 

  4. Bleuler E . Dementia Praecox or the Group of Schizophrenias (1911). International Universities Press: New York, 1950.

    Google Scholar 

  5. Carpenter Jr WT, Heinrichs DW, Wagman AM . Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry 1988; 145: 578–583.

    Article  PubMed  Google Scholar 

  6. Kane J, Honigfeld G, Singer J, Meltzer H . Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988; 45: 789–796.

    Article  CAS  PubMed  Google Scholar 

  7. Craddock N, O′Donovan MC, Owen MJ . Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or ″schizoaffective″) psychoses. Schizophr Bull 2009; 35: 482–490.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saha S, Chant D, Welham J, McGrath J . A systematic review of the prevalence of schizophrenia. PLoS Med 2005; 2: e141.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alaraisanen A, Miettunen J, Rasanen P, Fenton W, Koivumaa-Honkanen HT, Isohanni M . Suicide rate in schizophrenia in the Northern Finland 1966 Birth Cohort. Social Psychiatry Psychiatric Epidemiol 2009; 44: 1107–1110.

    Article  Google Scholar 

  10. Robinson DG, Woerner MG, McMeniman M, Mendelowitz A, Bilder RM . Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. Am J Psychiatry 2004; 161: 473–479.

    Article  PubMed  Google Scholar 

  11. Harrison G, Hopper K, Craig T, Laska E, Siegel C, Wanderling J et al. Recovery from psychotic illness: a 15- and 25-year international follow-up study. Br J Psychiatry J Mental Sci 2001; 178: 506–517.

    Article  CAS  Google Scholar 

  12. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 2011; 21: 718–779.

    Article  CAS  PubMed  Google Scholar 

  13. Marwaha S, Johnson S, Bebbington P, Stafford M, Angermeyer MC, Brugha T et al. Rates and correlates of employment in people with schizophrenia in the UK, France and Germany. Br J Psychiatry J Mental Sci 2007; 191: 30–37.

    Article  Google Scholar 

  14. Folsom DP, Hawthorne W, Lindamer L, Gilmer T, Bailey A, Golshan S et al. Prevalence and risk factors for homelessness and utilization of mental health services among 10 340 patients with serious mental illness in a large public mental health system. Am J Psychiatry 2005; 162: 370–376.

    Article  PubMed  Google Scholar 

  15. WHO. The Global Burden of Disease: 2004 Update. WHO Press: Geneva, Switzerland, 2008.

  16. Feinberg I . Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 1982; 17: 319–334.

    Article  PubMed  Google Scholar 

  17. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  18. Murray RM, Jones P, O′Callaghan E . Fetal brain development and later schizophrenia. Ciba Found Symp 1991; 156: 155–163, discussion 163–170.

    CAS  PubMed  Google Scholar 

  19. van Os J, Kenis G, Rutten BP . The environment and schizophrenia. Nature 2010; 468: 203–212.

    Article  CAS  PubMed  Google Scholar 

  20. Sullivan PF . The genetics of schizophrenia. PLoS Med 2005; 2: e212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kraepelin E . Dementia Præcox and Paraphrenia. Chicago Medical Book Company: Chicago, 1919.

    Google Scholar 

  22. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed  Google Scholar 

  23. Cardno AG, Gottesman . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  24. Karayiorgou M, Simon TJ, Gogos JA . 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 2010; 11: 402–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobrynski LJ, Sullivan KE . Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 2007; 370: 1443–1452.

    Article  CAS  PubMed  Google Scholar 

  26. Shprintzen RJ, Goldberg RB, Lewin ML, Sidoti EJ, Berkman MD, Argamaso RV et al. A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velo-cardio-facial syndrome. Cleft Palate J 1978; 15: 56–62.

    CAS  PubMed  Google Scholar 

  27. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  28. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 1994; 182: 476–478.

    Article  CAS  PubMed  Google Scholar 

  29. Bassett AS, Hodgkinson K, Chow EW, Correia S, Scutt LE, Weksberg R . 22q11 deletion syndrome in adults with schizophrenia. Am J Med Genet 1998; 81: 328–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 1995; 92: 7612–7616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bassett AS, Chow EW, AbdelMalik P, Gheorghiu M, Husted J, Weksberg R . The schizophrenia phenotype in 22q11 deletion syndrome. Am J Psychiatry 2003; 160: 1580–1586.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  33. Jacobs PA, Brunton M, Frackiewicz A, Newton MPJLC, Robson EB . Studies on a family with three cytogenetic markers. Ann Hum Genet 1970; 33: 325–336.

    Article  Google Scholar 

  34. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  35. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishizuka K, Kamiya A, Oh EC, Kanki H, Seshadri S, Robinson JF et al. DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature 2011; 473: 92–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 2008; 165: 497–506.

    Article  PubMed  Google Scholar 

  38. Collins AL, Kim Y, Sklar P, O′Donovan MC, Sullivan PF . Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. Psychological Med 2011; 42: 1–10.

    Google Scholar 

  39. Paunio T, Ekelund J, Varilo T, Parker A, Hovatta I, Turunen JA et al. Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet 2001; 10: 3037–3048.

    Article  CAS  PubMed  Google Scholar 

  40. Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2005; 10: 486–499.

    Article  CAS  PubMed  Google Scholar 

  41. Holliday EG, Nyholt DR, Tirupati S, John S, Ramachandran P, Ramamurti M et al. Strong evidence for a novel schizophrenia risk locus on chromosome 1p31.1 in homogeneous pedigrees from Tamil Nadu, India. Am J Psychiatry 2009; 166: 206–215.

    Article  PubMed  Google Scholar 

  42. Holmans PA, Riley B, Pulver AE, Owen MJ, Wildenauer DB, Gejman PV et al. Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Mol Psychiatry 2009; 14: 786–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 2009; 14: 774–785.

    Article  CAS  PubMed  Google Scholar 

  44. Allen NC, Bagade S, McQueen MB, Ioannidis JPA, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827–834.

    Article  CAS  PubMed  Google Scholar 

  45. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106: 9362–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Visscher PM, Brown MA, McCarthy MI, Yang J . Five years of GWAS discovery. Am J Human Genet 2012; 90: 7–24.

    Article  CAS  Google Scholar 

  47. Mah S, Nelson MR, Delisi LE, Reneland RH, Markward N, James MR et al. Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol Psychiatry 2006; 11: 471–478.

    Article  CAS  PubMed  Google Scholar 

  48. Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 2007; 12: 572–580.

    Article  CAS  PubMed  Google Scholar 

  49. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kirov G, Zaharieva I, Georgieva L, Moskvina V, Nikolov I, Cichon S et al. A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry 2009; 14: 796–803.

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Chen G, Norton N, Liu W, Zhu H, Zhou P et al. Whole genome association study in a homogenous population in Shandong peninsula of China reveals JARID2 as a susceptibility gene for schizophrenia. J Biomed Biotechnol 2009; 2009: 536918.

    PubMed  PubMed Central  Google Scholar 

  52. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL et al. A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 2009; 5: e1000373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Purcell SM, Wray NR, Stone JL, Visscher PM, O′Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  54. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe′er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rietschel M, Mattheisen M, Degenhardt F, Kahn RS, Linszen DH, Os JV et al. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry advance online publication, 12 July 2011; doi:10.1038/mp.2011.80.

    Article  CAS  PubMed  Google Scholar 

  57. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  58. Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat Genet 2011; 43: 1224–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Steinberg S, de Jong S, Andreassen OA, Werge T, Borglum AD, Mors O et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Human Mol Genet 2011; 20: 4076–4081.

    Article  CAS  Google Scholar 

  60. Yue W-H, Wang H-F, Sun L-D, Tang F-L, Liu Z-H, Zhang H-X et al. Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nat Genet 2011; 43: 1228–1231.

    Article  CAS  PubMed  Google Scholar 

  61. O′Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  62. Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 2010; 28: 1060–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I et al. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 2011; 69: 472–478.

    Article  PubMed  Google Scholar 

  65. Visscher PM, Goddard ME, Derks EM, Wray NR . Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Mol Psychiatry advance online publication, 14 June 2011; doi:10.1038/mp.2011.65.

    Article  CAS  PubMed  Google Scholar 

  66. Craddock N, O′Donovan MC, Owen MJ . Phenotypic and genetic complexity of psychosis. Invited commentary on Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007; 190: 200–203.

    Article  PubMed  Google Scholar 

  67. McClellan JM, Susser E, King M-C . Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007; 190: 194–199.

    Article  PubMed  Google Scholar 

  68. Ruderfer DM, Kirov G, Chambert K, Moran JL, Owen MJ, O′Donovan MC et al. A family-based study of common polygenic variation and risk of schizophrenia. Mol Psychiatry 2011; 16: 887–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mitchell KJ, Porteous DJ . Rethinking the genetic architecture of schizophrenia. Psychol Med 2010; 41: 1–14.

    Google Scholar 

  70. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB . Rare variants create synthetic genome-wide associations. PLoS Biol 2010; 8: e1000294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anderson CA, Soranzo N, Zeggini E, Barrett JC . Synthetic associations are unlikely to account for many common disease genome-wide association signals. PLoS Biol 2011; 9: e1000580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wray NR, Purcell SM, Visscher PM . Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol 2011; 9: e1000579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee SH, DeCandia TR, Ripke S, Yang J, The Schizophrenia Psychiatric Genome Wide Association Study Consortium (PGC-SCZ), The International Schizophrenia Consortium (ISC) et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat Genet 2012; 44: 247–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010; 42: 565–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  76. Stone JL, O′Donovan MC, Gurling H, Kirov GK, Blackwood DHR, Corvin A et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  77. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 Microdeletions and VIPR2 Duplications. Am J Psychiatry 2011; 168: 302–316.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S et al. High frequencies of De Novo CNVs in bipolar disorder and schizophrenia. Neuron 2011; 72: 951–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu B, Roos JL, Levy S, Van Rensburg EJ, Gogos JA, Karayiorgou M . Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.

    Article  CAS  PubMed  Google Scholar 

  80. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 2012; 17: 142–153.

    Article  CAS  PubMed  Google Scholar 

  81. Stefansson H, Rujescu D, Cichon S, Pietilainen OPH, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kirov G, Rujescu D, Ingason A, Collier DA, O′Donovan MC, Owen MJ . Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull 2009; 35: 851–854.

    Article  PubMed  PubMed Central  Google Scholar 

  83. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009; 41: 1223–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rujescu D, Ingason A, Cichon S, Pietiläinen OPH, Barnes MR, Toulopoulou T et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 2009; 18: 988–996.

    Article  CAS  PubMed  Google Scholar 

  85. Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietilainen OP et al. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry 2011; 16: 17–25.

    Article  CAS  PubMed  Google Scholar 

  86. Vacic V, McCarthy S, Malhotra D, Murray F, Chou H-H, Peoples A et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 2011; 471: 499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rees E, Moskvina V, Owen MJ, O′Donovan MC, Kirov G . De novo rates and selection of schizophrenia-associated copy number variants. Biol Psychiatry 2011; 70: 1109–1114.

    Article  PubMed  Google Scholar 

  88. Haukka J, Suvisaari J, Lonnqvist J . Fertility of patients with schizophrenia, their siblings, and the general population: a cohort study from 1950 to 1959 in Finland. Am J Psychiatry 2003; 160: 460–463.

    Article  PubMed  Google Scholar 

  89. Melhem N, Middleton F, McFadden K, Klei L, Faraone SV, Vinogradov S et al. Copy number variants for schizophrenia and related psychotic disorders in oceanic Palau: risk and transmission in extended pedigrees. Biol Psychiatry 2011; 70: 1115–1121.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pinto D, Darvishi K, Shi X, Rajan D, Rigler D, Fitzgerald T et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol 2011; 29: 512–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Keller MC, Miller G . Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behav Brain Sci 2006; 29: 385.

    Article  PubMed  Google Scholar 

  92. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  CAS  PubMed  Google Scholar 

  93. State MW, Levitt P . The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci 2011; 14: 1499–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43: 860–863.

    Article  CAS  PubMed  Google Scholar 

  95. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011; 43: 864–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Addington AM, Gauthier J, Piton A, Hamdan FF, Raymond A, Gogtay N et al. A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Mol Psychiatry 2011; 16: 238–239.

    Article  CAS  PubMed  Google Scholar 

  97. Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am J Hum Genet 2010; 87: 316–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carroll LS, Williams NM, Moskvina V, Russell E, Norton N, Williams HJ et al. Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Mol Psychiatry 2010; 15: 1101–1111.

    Article  CAS  PubMed  Google Scholar 

  99. Frank RA, McRae AF, Pocklington AJ, van de Lagemaat LN, Navarro P, Croning MD et al. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder. PLoS One 2011; 6: e19011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gauthier J, Champagne N, Lafrenière RG, Xiong L, Spiegelman D, Brustein E et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA 2010; 107: 7863–7868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Knight HM, Pickard BS, Maclean A, Malloy MP, Soares DC, McRae AF et al. A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. Am J Hum Genet 2009; 85: 833–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kushima I, Nakamura Y, Aleksic B, Ikeda M, Ito Y, Shiino T et al. Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to schizophrenia susceptibility. Schizophr Bull advance online publication, 1 November 2010; doi:10.1093/schbul/sbq118.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Piton A, Gauthier J, Hamdan FF, Lafrenière RG, Yang Y, Henrion E et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry 2011; 16: 867–880.

    Article  CAS  PubMed  Google Scholar 

  104. Tarabeux J, Champagne N, Brustein E, Hamdan FF, Gauthier J, Lapointe M et al. De novo truncating mutation in kinesin 17 associated with schizophrenia. Biol Psychiatry 2010; 68: 649–656.

    Article  CAS  PubMed  Google Scholar 

  105. Vermeesch JR, Balikova I, Schrander-Stumpel C, Fryns JP, Devriendt K . The causality of de novo copy number variants is overestimated. Eur J Hum Genet 2011; 19: 1112–1113.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    CAS  PubMed  Google Scholar 

  107. Gottesman II, Laursen TM, Bertelsen A, Mortensen PB . Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry 2010; 67: 252–257.

    Article  PubMed  Google Scholar 

  108. Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E et al. Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 2009; 14: 252–260.

    Article  CAS  PubMed  Google Scholar 

  109. Williams HJ, Craddock N, Russo G, Hamshere ML, Moskvina V, Dwyer S et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Human Mol Genet 2011; 20: 387–391.

    Article  CAS  Google Scholar 

  110. Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2011; 16: 429–441.

    Article  CAS  PubMed  Google Scholar 

  111. Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  CAS  PubMed Central  Google Scholar 

  112. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 2008; 359: 1685–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Quintero-Rivera F, Sharifi-Hannauer P, Martinez-Agosto JA . Autistic and psychiatric findings associated with the 3q29 microdeletion syndrome: case report and review. Am J Med Genet A 2010; 152A: 2459–2467.

    Article  PubMed  Google Scholar 

  115. Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T et al. Abundant pleiotropy in human complex diseases and traits. Am J Human Genet 2011; 89: 607–618.

    Article  CAS  Google Scholar 

  116. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010; 467: 832–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. O′Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D et al. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry 2010; 16: 286–292.

    Article  CAS  PubMed  Google Scholar 

  118. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, Holmans PA et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry advance online publication, 20 September 2011; doi:10.1038/mp.2011.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA 2010; 107: 10584–10589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Raychaudhuri S, Korn JM, McCarroll SA, Consortium IS, Altshuler D, Sklar P et al. Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function. PLoS Genet 2010; 6: e1001097; doi:10.1371/journal.pgen.1001097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim Y, Zerwas S, Trace SE, Sullivan PF . Schizophrenia genetics: where next? Schizophrenia Bull 2011; 37: 456–463.

    Article  Google Scholar 

  122. Pritchard JK . Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001; 69: 124–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Eyre-Walker A . Evolution in health and medicine sackler colloquium: genetic architecture of a complex trait and its implications for fitness and genome-wide association studies. Proc Natl Acad Sci USA 2010; 107 (Suppl 1): 1752–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Richards AL, Jones L, Moskvina V, Kirov G, Gejman PV, Levinson DF et al. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Mol Psychiatry 2011; 17: 193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sullivan P . Don′t give up on GWAS. Mol Psychiatry 2011; 17: 2–3.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lee SH, Wray NR, Goddard ME, Visscher PM . Estimating missing heritability for disease from genome-wide association studies. Am J Human Genet 2011; 88: 294–305.

    Article  CAS  Google Scholar 

  127. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42: 579–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang J, Wray NR, Visscher PM . Comparing apples and oranges: equating the power of case-control and quantitative trait association studies. Genet Epidemiol 2010; 34: 254–257.

    Article  PubMed  Google Scholar 

  129. Cortes A, Brown MA . Promise and pitfalls of the immunochip. Arthritis Res Ther 2011; 13: 101.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Trynka G, Hunt KA, Bockett NA, Romanos J, Mistry V, Szperl A et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 2011; 43: 1193–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mardis ER . A decade′s perspective on DNA sequencing technology. Nature 2011; 470: 198–203.

    Article  CAS  PubMed  Google Scholar 

  132. Bodmer W, Bonilla C . Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008; 40: 695–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shendure J . Next-generation human genetics. Genome Biol 2011; 12: 408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011; 12: 745–755.

    Article  CAS  PubMed  Google Scholar 

  135. Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011; 478: 57–63.

    Article  CAS  PubMed  Google Scholar 

  136. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 2010; 328: 636–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li B, Leal SM . Discovery of rare variants via sequencing: implications for the design of complex trait association studies. PLoS Genet 2009; 5: e1000481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Morris AP, Zeggini E . An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 2010; 34: 188–193.

    Article  PubMed  Google Scholar 

  139. Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgason A, Gudjonsson SA et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet 2011; 43: 1127–1130.

    Article  CAS  PubMed  Google Scholar 

  140. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 2011; 43: 1066–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK, Ripke S et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat Genet 2011; 43: 1232–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E, Guillaume JL et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 2012; 44: 297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011; 480: 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cooper GM, Shendure J . Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat Rev Genet 2011; 12: 628–640.

    Article  CAS  PubMed  Google Scholar 

  145. Ozsolak F, Milos PM . RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011; 12: 87–98.

    Article  CAS  PubMed  Google Scholar 

  146. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M et al. Spatio-temporal transcriptome of the human brain. Nature 2011; 478: 483–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011; 478: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Werner T . Next generation sequencing in functional genomics. Brief Bioinform 2010; 11: 499–511.

    Article  CAS  PubMed  Google Scholar 

  149. Ala-Korpela M, Kangas AJ, Inouye M . Genome-wide association studies and systems biology: together at last. Trends Genet 2011; 27: 493–498.

    Article  CAS  PubMed  Google Scholar 

  150. Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 2011; 20: 4786–4796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mudge J, Miller NA, Khrebtukova I, Lindquist IE, May GD, Huntley JJ et al. Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS One 2008; 3: e3625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rollins B, Martin MV, Morgan L, Vawter MP . Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 919–936.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Goldsmith CA, Rogers DP . The case for autoimmunity in the etiology of schizophrenia. Pharmacotherapy 2008; 28: 730–741.

    Article  CAS  PubMed  Google Scholar 

  154. Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K et al. Potential metabolite markers of schizophrenia. Mol Psychiatry advance online publication, 25 October 2011; doi:10.1038/mp.2011.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Deep-Soboslay A, Benes FM, Haroutunian V, Ellis JK, Kleinman JE, Hyde TM . Psychiatric brain banking: three perspectives on current trends and future directions. Biol Psychiatry 2011; 69: 104–112.

    Article  PubMed  Google Scholar 

  156. Wu SM, Hochedlinger K . Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 2011; 13: 497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Huttner A, Rakic P . Diagnosis in a dish: your skin can help your brain. Nat Med 2011; 17: 1558–1559.

    Article  CAS  PubMed  Google Scholar 

  158. Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry 2011; 16: 358–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011; 25: 88–103.

    Article  CAS  PubMed  Google Scholar 

  161. Kvajo M, McKellar H, Gogos JA . Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience advance online publication, 27 July 2011; doi:10.1016/j.neuroscience.2011.07.051 (in press).

  162. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001; 104: 619–629.

    Article  CAS  PubMed  Google Scholar 

  163. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40: 751–760.

    Article  CAS  PubMed  Google Scholar 

  164. Burne T, Scott E, van Swinderen B, Hilliard M, Reinhard J, Claudianos C et al. Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish? Mol Psychiatry 2011; 16: 7–16.

    Article  CAS  PubMed  Google Scholar 

  165. van Alphen B, van Swinderen B . Drosophila strategies to study psychiatric disorders. Brain Res Bull advance online publication, 17 September 2011; doi:10.1016/j.brainresbull.2011.09.007 (in press).

  166. Brennand KJ, Gage FH . Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 2011; 29: 1915–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dolmetsch R, Geschwind DH . The human brain in a dish: the promise of iPSC-derived neurons. Cell 2011; 145: 831–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dragunow M . The adult human brain in preclinical drug development. Nat Rev Drug Discovery 2008; 7: 659–666.

    Article  CAS  PubMed  Google Scholar 

  169. Rakic P . Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 2009; 10: 724–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  PubMed  Google Scholar 

  171. Meyer-Lindenberg A . From maps to mechanisms through neuroimaging of schizophrenia. Nature 2010; 468: 194–202.

    Article  CAS  PubMed  Google Scholar 

  172. Greenwood TA, Braff DL, Light GA, Cadenhead KS, Calkins ME, Dobie DJ et al. Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry 2007; 64: 1242–1250.

    Article  PubMed  Google Scholar 

  173. Boos HB, Aleman A, Cahn W, Hulshoff Pol H, Kahn RS . Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry 2007; 64: 297–304.

    Article  PubMed  Google Scholar 

  174. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Zoltick B et al. Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biol Psychiatry 2008; 63: 475–483.

    Article  PubMed  Google Scholar 

  175. Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 2009; 324: 605.

    Article  CAS  PubMed  Google Scholar 

  176. Esslinger C, Kirsch P, Haddad L, Mier D, Sauer C, Erk S et al. Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 2011; 54: 2514–2523.

    Article  PubMed  Google Scholar 

  177. Paulus FM, Krach S, Bedenbender J, Pyka M, Sommer J, Krug A et al. Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Human Brain Mapping advance online publication, 31 October 2011; doi:10.1002/hbm.21434.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Lencz T, Szeszko PR, DeRosse P, Burdick KE, Bromet EJ, Bilder RM et al. A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacol Off Publication Am Coll Neuropsychopharmacol 2010; 35: 2284–2291.

    Article  CAS  Google Scholar 

  179. Erk S, Meyer-Lindenberg A, Schnell K, Opitz von Boberfeld C, Esslinger C, Kirsch P et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 2010; 67: 803–811.

    Article  PubMed  Google Scholar 

  180. Zhang Q, Shen Q, Xu Z, Chen M, Cheng L, Zhai J et al. The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology 2012; 37; 677–684.

    Article  CAS  PubMed  Google Scholar 

  181. Chow EW, Ho A, Wei C, Voormolen EH, Crawley AP, Bassett AS . Association of schizophrenia in 22q11.2 deletion syndrome and gray matter volumetric deficits in the superior temporal gyrus. Am J Psychiatry 2011; 168: 522–529.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Neul JL . Unfolding neurodevelopmental disorders: the mystery of developing connections. Nat Med 2011; 17: 1353–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Insel TR . Rethinking schizophrenia. Nature 2010; 468: 187–193.

    Article  CAS  PubMed  Google Scholar 

  184. Wray NR, Yang J, Goddard ME, Visscher PM . The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet 2010; 6: e1000864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wray NR, Goddard ME, Visscher PM . Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 2007; 17: 1520–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Wray NR, Goddard ME, Visscher PM . Prediction of individual genetic risk of complex disease. Curr Opin Genet Dev 2008; 18: 257–263.

    Article  CAS  PubMed  Google Scholar 

  187. Arranz MJ, Rivera M, Munro JC . Pharmacogenetics of response to antipsychotics in patients with schizophrenia. CNS Drugs 2011; 25: 933–969.

    Article  CAS  PubMed  Google Scholar 

  188. Paul SM . Therapeutic antibodies for brain disorders. Sci Transl Med 2011; 3: 84ps20.

    Article  CAS  PubMed  Google Scholar 

  189. Muglia P . From genes to therapeutic targets for psychiatric disorders - what to expect? Curr Opin Pharmacol 2011; 11: 563–571.

    Article  CAS  PubMed  Google Scholar 

  190. Abbott A . Novartis to shut brain research facility. Nature 2011; 480: 161–162.

    Article  CAS  PubMed  Google Scholar 

  191. Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 1997; 94: 587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Leonard S, Gault J, Moore T, Hopkins J, Robinson M, Olincy A et al. Further investigation of a chromosome 15 locus in schizophrenia: analysis of affected sibpairs from the NIMH Genetics Initiative. Am J Med Genet 1998; 81: 308–312.

    Article  CAS  PubMed  Google Scholar 

  193. Stephens SH, Franks A, Berger R, Palionyte M, Fingerlin TE, Wagner B et al. Multiple genes in the 15q13-q14 chromosomal region are associated with schizophrenia. Psychiatr Genet 2012; 22: 1–14.

    Article  CAS  PubMed  Google Scholar 

  194. Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N et al. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. J Neurochem 1999; 73: 1590–1597.

    Article  CAS  PubMed  Google Scholar 

  195. Martin LF, Kem WR, Freedman R . Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology 2004; 174: 54–64.

    Article  CAS  PubMed  Google Scholar 

  196. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 2006; 63: 630–638.

    Article  CAS  PubMed  Google Scholar 

  197. Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 2008; 165: 1040–1047.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Tregellas JR, Tanabe J, Rojas DC, Shatti S, Olincy A, Johnson L et al. Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry 2011; 69: 7–11.

    Article  CAS  PubMed  Google Scholar 

  199. Williams DK, Wang J, Papke RL . Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 2011; 82: 915–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Green ED, Guyer MS . Charting a course for genomic medicine from base pairs to bedside. Nature 2011; 470: 204–213.

    Article  CAS  PubMed  Google Scholar 

  201. Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T et al. Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry 2010; 67: 283–286.

    Article  PubMed  Google Scholar 

  202. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007; 39: 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Magri C, Sacchetti E, Traversa M, Valsecchi P, Gardella R, Bonvicini C et al. New copy number variations in schizophrenia. PLoS One 2010; 5: e13422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC et al. Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet 2010; 87: 229–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Willatt L, Cox J, Barber J, Cabanas ED, Collins A, Donnai D et al. 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet 2005; 77: 154–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH . Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11-q13). Hum Mol Genet 1999; 8: 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  208. Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C et al. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet 2009; 46: 242–248.

    Article  CAS  PubMed  Google Scholar 

  209. Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet 2008; 40: 322–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009; 41: 160–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ingason A, Kirov G, Giegling I, Hansen T, Isles AR, Jakobsen KD et al. Maternally derived microduplications at 15q11-q13: implication of imprinted genes in psychotic illness. Am J Psychiatry 2011; 168: 408–417.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.

    Article  CAS  PubMed  Google Scholar 

  213. Fernandez BA, Roberts W, Chung B, Weksberg R, Meyn S, Szatmari P et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. J Med Genet 2010; 47: 195–203.

    Article  PubMed  Google Scholar 

  214. Ullmann R, Turner G, Kirchhoff M, Chen W, Tonge B, Rosenberg C et al. Array CGH identifies reciprocal 16p13.1 duplications and deletions that predispose to autism and/or mental retardation. Human Mutation 2007; 28: 674–682.

    Article  CAS  PubMed  Google Scholar 

  215. Chance PF, Alderson MK, Leppig KA, Lensch MW, Matsunami N, Smith B et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 1993; 72: 143–151.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Australian National Health and Medical Research Council Grants 631406, 631671 and by Queensland Health. We thank the anonymous referees for their helpful comments and Dee McGrath for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B J Mowry.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mowry, B., Gratten, J. The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 18, 38–52 (2013). https://doi.org/10.1038/mp.2012.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.34

Keywords

This article is cited by

Search

Quick links