Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish?

Abstract

While the research community has accepted the value of rodent models as informative research platforms, there is less awareness of the utility of other small vertebrate and invertebrate animal models. Neuroscience is increasingly turning to smaller, non-rodent models to understand mechanisms related to neuropsychiatric disorders. Although they can never replace clinical research, there is much to be learnt from ‘small brains’. In particular, these species can offer flexible genetic ‘tool kits’ that can be used to explore the expression and function of candidate genes in different brain regions. Very small animals also offer efficiencies with respect to high-throughput screening programs. This review provides a concise overview of the utility of models based on worm, fruit fly, honeybee and zebrafish. Although these species may have small brains, they offer the neuropsychiatric research community opportunities to explore some of the most important research questions in our field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Tallman JF . Neuropsychopharmacology at the new millennium: new industry directions. Neuropsychopharmacology 1999; 20: 99–105.

    Article  CAS  PubMed  Google Scholar 

  2. Miczek KA, de Wit H . Challenges for translational psychopharmacology research—some basic principles. Psychopharmacology (Berl) 2008; 199: 291–301.

    Article  CAS  Google Scholar 

  3. Marsden CA, Rex A . Transgenics and psychopharmacology—introduction. Rev Neurosci 2000; 11: 1–2.

    Article  CAS  PubMed  Google Scholar 

  4. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  PubMed  Google Scholar 

  5. German DC, Eisch AJ . Mouse models of Alzheimer's disease: insight into treatment. Rev Neurosci 2004; 15: 353–369.

    Article  PubMed  Google Scholar 

  6. Tecott LH . The genes and brains of mice and men. Am J Psychiatry 2003; 160: 646–656.

    Article  PubMed  Google Scholar 

  7. Arguello PA, Gogos JA . Modeling madness in mice: one piece at a time. Neuron 2006; 52: 179–196.

    Article  CAS  PubMed  Google Scholar 

  8. Crawley JN . Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 2007; 17: 448–459.

    Article  PubMed  PubMed Central  Google Scholar 

  9. White JG, Southgate E, Thomson JN, Brenner S . The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 1986; 314: 1–340.

    Article  CAS  PubMed  Google Scholar 

  10. Chatterjee N, Sinha S . Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Progress in Brain Research 2007; Vol 168: pp 145–153.

    Article  Google Scholar 

  11. Kendler KS, Greenspan RJ . The nature of genetic influences on behavior: lessons from ‘simpler’ organisms. Am J Psychiatry 2006; 163: 1683–1694.

    Article  PubMed  Google Scholar 

  12. Sawamura N, Ando T, Maruyama Y, Fujimuro M, Mochizuki H, Honjo K et al. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol Psychiatry 2008; 13: 1138–1148, 1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sawamura N, Ishida N, Tomoda T, Hai T, Furukubo-Tokunaga K, Sawa A . The fruitfly Drosophila melanogaster: a promising model to explore molecular psychiatry. Mol Psychiatry 2008; 13: 1069.

    Article  Google Scholar 

  14. Sulston JE, Schierenberg E, White JG, Thomson JN . The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983; 100: 64–119.

    Article  CAS  PubMed  Google Scholar 

  15. Hall DH, Russell RL . The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions. J Neurosci 1991; 11: 1–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takahashi K, Yoshina S, Masashi M, Ito W, Inoue T, Shiwaku H et al. Nematode homologue of PQBP1, a mental retardation causative gene, is involved in lipid metabolism. PLoS ONE 2009; 4: e4104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Grigorenko AP, Moliaka YK, Soto MC, Mello CC, Rogaev EI . The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. Proc Natl Acad Sci USA 2004; 101: 14955–14960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bloom L, Horvitz HR . The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation. Proc Natl Acad Sci USA 1997; 94: 3414–3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  PubMed  Google Scholar 

  20. Bord L, Wheeler J, Paek M, Saleh M, Lyons-Warren A, Ross CA et al. Primate disrupted-in-schizophrenia-1 (DISC1): high divergence of a gene for major mental illnesses in recent evolutionary history. Neurosci Res 2006; 56: 286–293.

    Article  CAS  PubMed  Google Scholar 

  21. Jin Y, Jorgensen E, Hartwieg E, Horvitz HR . The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 1999; 19: 539–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nass R, Miller DM, Blakely RD . C. elegans: a novel pharmacogenetic model to study Parkinson's disease. Parkinsonism Relat Disord 2001; 7: 185–191.

    Article  CAS  PubMed  Google Scholar 

  23. Sze JY, Victor M, Loer C, Shi Y, Ruvkun G . Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 2000; 403: 560–564.

    Article  CAS  PubMed  Google Scholar 

  24. Rugarli EI, Di Schiavi E, Hilliard MA, Arbucci S, Ghezzi C, Facciolli A et al. The Kallmann syndrome gene homolog in C. elegans is involved in epidermal morphogenesis and neurite branching. Development 2002; 129: 1283–1294.

    CAS  PubMed  Google Scholar 

  25. de Bono M, Maricq AV . Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 2005; 28: 451–501.

    Article  CAS  PubMed  Google Scholar 

  26. Feng Z, Li W, Ward A, Piggott BJ, Larkspur ER, Sternberg PW et al. A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 2006; 127: 621–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 2003; 115: 655–666.

    Article  CAS  PubMed  Google Scholar 

  28. Giles AC, Rose JK, Rankin CH . Investigations of learning and memory in Caenorhabditis elegans. Int Rev Neurobiol 2006; 69: 37–71.

    Article  CAS  PubMed  Google Scholar 

  29. Donohoe DR, Phan T, Weeks K, Aamodt EJ, Dwyer DS . Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel. J Neurosci Res 2008; 86: 2553–2563.

    Article  CAS  PubMed  Google Scholar 

  30. Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 2008; 451: 569–572.

    Article  CAS  PubMed  Google Scholar 

  31. Suo S, Ishiura S, Van Tol HH . Dopamine receptors in C. elegans. Eur J Pharmacol 2004; 500: 159–166.

    Article  CAS  PubMed  Google Scholar 

  32. Wolf FW, Heberlein U . Invertebrate models of drug abuse. J Neurobiol 2003; 54: 161–178.

    Article  CAS  PubMed  Google Scholar 

  33. Zubenko GS, Jones ML, Estevez AO, Hughes III HB, Estevez M . Identification of a CREB-dependent serotonergic pathway and neuronal circuit regulating foraging behavior in Caenorhabditis elegans: a useful model for mental disorders and their treatments? Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 12–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benzer S . Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc Natl Acad Sci USA 1967; 58: 1112–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tully T, Quinn WG . Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 1985; 157: 263–277.

    Article  CAS  PubMed  Google Scholar 

  36. Davis RL . Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 2005; 28: 275–302.

    Article  CAS  PubMed  Google Scholar 

  37. Hardin PE . The circadian timekeeping system of Drosophila. Curr Biol 2005; 15: R714–R722.

    Article  CAS  PubMed  Google Scholar 

  38. Greenspan RJ, Ferveur JF . Courtship in Drosophila. Annu Rev Genet 2000; 34: 205–232.

    Article  CAS  PubMed  Google Scholar 

  39. Vosshall LB . Into the mind of a fly. Nature 2007; 450: 193–197.

    Article  CAS  PubMed  Google Scholar 

  40. van Swinderen B . Attention-like processes in Drosophila require short-term memory genes. Science 2007; 315: 1590–1593.

    Article  CAS  PubMed  Google Scholar 

  41. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G . Correlates of sleep and waking in Drosophila melanogaster. Science 2000; 287: 1834–1837.

    Article  CAS  PubMed  Google Scholar 

  42. Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S . dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 1976; 73: 1684–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Davis RL, Cherry J, Dauwalder B, Han PL, Skoulakis E . The cyclic AMP system and Drosophila learning. Mol Cell Biochem 1995; 149–150: 271–278.

    Article  PubMed  Google Scholar 

  44. Davis RL, Dauwalder B . The Drosophila dunce locus: learning and memory genes in the fly. Trends Genet 1991; 7: 224–229.

    Article  CAS  PubMed  Google Scholar 

  45. Anderton BH . Alzheimer's disease: clues from flies and worms. Curr Biol 1999; 9: R106–R109.

    Article  CAS  PubMed  Google Scholar 

  46. Gotz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L et al. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 2004; 9: 664–683.

    Article  CAS  PubMed  Google Scholar 

  47. Simon AF, Liang DT, Krantz DE . Differential decline in behavioral performance of Drosophila melanogaster with age. Mech Ageing Dev 2006; 127: 647–651.

    Article  PubMed  Google Scholar 

  48. Apostol BL, Kazantsev A, Raffioni S, Illes K, Pallos J, Bodai L et al. A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc Natl Acad Sci USA 2003; 100: 5950–5955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cooper RL, Neckameyer WS . Dopaminergic modulation of motor neuron activity and neuromuscular function in Drosophila melanogaster. Comp Biochem Physiol B Biochem Mol Biol 1999; 122: 199–210.

    Article  CAS  PubMed  Google Scholar 

  50. Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001; 413: 739–743.

    Article  CAS  PubMed  Google Scholar 

  51. Li J, Ashley J, Budnik V, Bhat MA . Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 2007; 55: 741–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W . Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 2007; 581: 2509–2516.

    Article  CAS  PubMed  Google Scholar 

  53. Bolduc FV, Bell K, Cox H, Broadie KS, Tully T . Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat Neurosci 2008; 11: 1143–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Luca V, Muglia P, Jain U, Basile VS, Sokolowski MB, Kennedy JL . A drosophila model for attention deficit hyperactivity disorder (ADHD): no evidence of association with PRKG1 gene. Neuromolecular Med 2002; 2: 281–287.

    Article  CAS  PubMed  Google Scholar 

  55. Guarnieri DJ, Heberlein U . Drosophila melanogaster, a genetic model system for alcohol research. Int Rev Neurobiol 2003; 54: 199–228.

    Article  CAS  PubMed  Google Scholar 

  56. Scholz H . Intoxicated fly brains: neurons mediating ethanol-induced behaviors. J Neurogenet 2009; 23: 111–119.

    Article  CAS  PubMed  Google Scholar 

  57. Corl AB, Berger KH, Ophir-Shohat G, Gesch J, Simms JA, Bartlett SE et al. Happyhour, a Ste20 family kinase, implicates EGFR signaling in ethanol-induced behaviors. Cell 2009; 137: 949–960.

    Article  CAS  PubMed  Google Scholar 

  58. Dierick HA . A method for quantifying aggression in male Drosophila melanogaster. Nat Protoc 2007; 2: 2712–2718.

    Article  CAS  PubMed  Google Scholar 

  59. Hoyer SC, Eckart A, Herrel A, Zars T, Fischer SA, Hardie SL et al. Octopamine in male aggression of Drosophila. Curr Biol 2008; 18: 159–167.

    Article  CAS  PubMed  Google Scholar 

  60. van Swinderen B, Greenspan RJ . Salience modulates 20–30 Hz brain activity in Drosophila. Nat Neurosci 2003; 6: 579–586.

    Article  CAS  PubMed  Google Scholar 

  61. Seugnet L, Suzuki Y, Stidd R, Shaw PJ . Aversive phototaxic suppression: evaluation of a short-term memory assay in Drosophila melanogaster. Genes Brain Behav 2009; 8: 377–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC . A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Human Mol Genet 2008; 17: 170–178.

    Article  CAS  Google Scholar 

  63. Dokucu ME, Yu L, Taghert PH . Lithium- and valproate-induced alterations in circadian locomotor behavior in Drosophila. Neuropsychopharmacology 2005; 30: 2216–2224.

    Article  CAS  PubMed  Google Scholar 

  64. Gilestro GF, Tononi G, Cirelli C . Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 2009; 324: 109–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Swinderen B, Flores KA . Attention-like processes underlying optomotor performance in a Drosophila choice maze. J Neurobiol 2006; 67: 129–145.

    Article  Google Scholar 

  66. Swinderen B . The remote roots of consciousness in fruit-fly selective attention? Bioessays 2005; 27: 321–330.

    Article  PubMed  Google Scholar 

  67. Menzel R, Giurfa M . Cognition by a mini brain. Nature 1999; 400: 718–719.

    Article  CAS  PubMed  Google Scholar 

  68. Gould JL, Gould CG . The Honeybee. Scientific American Library: New York, 1995.

    Google Scholar 

  69. von Frisch K . The Dance Language and Orientation of Bees. Harvard Univ. Press.: London, 1993.

    Book  Google Scholar 

  70. Reinhard J, Srinivasan MV, Zhang SW . Scent-triggered navigation in honeybees. Nature 2004; 427: 411.

    Article  CAS  PubMed  Google Scholar 

  71. Giurfa M . Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comparative Physiol 2007; 193: 801–824.

    Article  Google Scholar 

  72. Letzkus P, Ribi WA, Wood JT, Zhu H, Zhang SW, Srinivasan MV . Lateralization of olfaction in the honeybee Apis mellifera. Curr Biol 2006; 16: 1471–1476.

    Article  CAS  PubMed  Google Scholar 

  73. Rogers LJ, Vallortigara G . From antenna to antenna: lateral shift of olfactory memory recall by honeybees. PLoS One 2008; 3: e2340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Human Mol Genet 2009; 18: 988–996.

    Article  CAS  Google Scholar 

  75. Chubykin AA, Liu X, Comoletti D, Tsigelny I, Taylor P, Sudhof TC . Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism. J Biol Chem 2005; 280: 22365–22374.

    Article  CAS  PubMed  Google Scholar 

  76. Biswas S, Russell RJ, Jackson CJ, Vidovic M, Ganeshina O, Oakeshott JG et al. Bridging the synaptic gap: neuroligins and neurexin I in Apis mellifera. PLoS ONE 2008; 3: e3542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD, Maleszka R . Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006; 443: 931–949.

    Article  CAS  Google Scholar 

  78. Baier H, Scott EK . Genetic and optical targeting of neural circuits and behavior-zebrafish in the spotlight. Curr Opin Neurobiol 2009; 19: 553–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baier H . Zebrafish on the move: towards a behavior-genetic analysis of vertebrate vision. Curr Opin Neurobiol 2000; 10: 451–455.

    Article  CAS  PubMed  Google Scholar 

  80. McLean DL, Fetcho JR . Using imaging and genetics in zebrafish to study developing spinal circuits in vivo. Dev Neurobiol 2008; 68: 817–834.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Debruyne J, Hurd MW, Gutiérrez L, Kaneko M, Tan Y, Wells DE et al. Isolation and phenogenetics of a novel circadian rhythm mutant in zebrafish. J Neurogenet 2004; 18: 403–428.

    Article  CAS  PubMed  Google Scholar 

  82. Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF . Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 2006; 26: 13400–13410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bretaud S, Li Q, Lockwood BL, Kobayashi K, Lin E, Guo S . A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 2007; 146: 1109–1116.

    Article  CAS  PubMed  Google Scholar 

  84. Darland T, Dowling JE . Behavioral screening for cocaine sensitivity in Mutagenized Zebrafish. Proc Natl Acad Sci USA 2001; 98: 11691–11696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gerlai R, Lahav M, Guo S, Rosenthal A . Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behavior 2000; 67: 773–782.

    Article  CAS  Google Scholar 

  86. Kily LJM, Cowe YCM, Hussain O, Patel S, McElwaine S, Cotter FE et al. Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 2008; 211: 1623–1634.

    Article  CAS  PubMed  Google Scholar 

  87. Ninkovic J, Bally-Cuif L . The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 2006; 39: 262–274.

    Article  CAS  PubMed  Google Scholar 

  88. Best JD, Berghmans S, Hunt JJFG, Clarke SC, Fleming A, Goldsmith P et al. Non-associative learning in larval zebrafish. Neuropsychopharmacology 2008; 33: 1206–1215.

    Article  CAS  PubMed  Google Scholar 

  89. Best JD, Alderton WK . Zebrafish: an in vivo model for the study of neurological diseases. Neuropsychiatric Disease and Treatment 2008; 4: 567–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo S . Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes, Brain and Behavior 2004; 3: 63–74.

    Article  CAS  Google Scholar 

  91. Schweitzer J, Driever W . Development of the dopamine systems in zebrafish. Adv Exp Med Biol 2009; 651: 1–14.

    Article  CAS  PubMed  Google Scholar 

  92. Ekker SC, Larson JD . Morphant technology in model developmental systems. Genesis 2001; 30: 89–93.

    Article  CAS  PubMed  Google Scholar 

  93. Elliott DA, Brand AH . The GAL4 system: a versatile system for the expression of genes. Methods Mol Biol (Clifton, NJ) 2008; 420: 79–95.

    Article  CAS  Google Scholar 

  94. Lichtman JW, Smith SJ . Seeing circuits assemble. Neuron 2008; 60: 441–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arrenberg AB, Del Bene F, Baier H . Optical control of zebrafish behavior with halorhodopsin. Proc Natl Acad Sci USA 2009; 106: 17968–17973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Borue X, Cooper S, Hirsh J, Condron B, Venton BJ . Quantitative evaluation of serotonin release and clearance in Drosophila. J Neurosci Methods 2009; 179: 300–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wyart C, Del Bene F, Warp E, Scott EK, Trauner D, Baier H et al. Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 2009; 461: 407–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Olsen SR, Wilson RI . Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci 2008; 31: 512–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu Y, Bolduc FV, Bell K, Tully T, Fang Y, Sehgal A et al. A Drosophila model for Angelman syndrome. Proc Natl Acad Sci USA 2008; 105: 12399–12404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schnabel J . Neuroscience: standard model. Nature 2008; 454: 682–685.

    Article  CAS  PubMed  Google Scholar 

  101. van der Staay FJ . Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Rev 2006; 52: 131–159.

    Article  PubMed  Google Scholar 

  102. Meyer U, Feldon J . Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2009; e-pub ahead of print.

  103. van der Staay FJ, Arndt SS, Nordquist RE . Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 2009; 5: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kandel ER . In Search of Memory: The Emergence of a New Science of Mind Norton. New York, 2006.

    Google Scholar 

  105. Sattelle DB, Jones AK, Buckingham SD . Insect genomes: challenges and opportunities for neuroscience. Invert Neurosci 2007; 7: 133–136.

    Article  PubMed  Google Scholar 

  106. McGrath JJ, Richards LJ . Why schizophrenia epidemiology needs neurobiology—and vice versa. Schizophr Bull 2009; 35: 577–581.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Health and Medical Research Council, the Australian Research Council, and the Queensland Brain Institute. The photograph of C. elegans was kindly provided by Brent Neumann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J McGrath.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burne, T., Scott, E., van Swinderen, B. et al. Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish?. Mol Psychiatry 16, 7–16 (2011). https://doi.org/10.1038/mp.2010.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.35

Keywords

This article is cited by

Search

Quick links