Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Detrimental effects of glucocorticoids on neuronal migration during brain development

Abstract

Glucocorticoids, the most downstream effectors of the hypothalamus–pituitary–adrenal axis, are one of main mediators of the stress reaction. Indeed, exposure to high levels of stress-triggered glucocorticoids is detrimental to brain development associated with abnormal behaviors in experimental animals and the risk of psychiatric disorders in humans. Despite the wealth of this knowledge, the cellular and molecular mechanisms underlying the detrimental effects of glucocorticoids on brain development remain unclear. Here, we show that excess glucocorticoids retard the radial migration of post-mitotic neurons during the development of the cerebral cortex, and identify an actin regulatory protein, caldesmon, as the glucocorticoids’ main target. The upregulation of caldesmon expression is mediated by glucocorticoid receptor-dependent transcription of the CALD1 gene encoding caldesmon. This upregulated caldesmon negatively controls the function of myosin II, leading to changes in cell shape and migration. The depletion of caldesmon in vivo impairs radial migration. The overexpression of caldesmon also causes delayed radial migration during cortical development, mimicking the excessive glucocorticoid-induced retardation of radial migration. We conclude that an appropriate range of caldesmon expression is critical for radial migration, and that its overexpression induced by excess glucocorticoid retards radial migration during cortical development. Thus, this study provides a novel insight into the underlying mechanism of glucocorticoid-related neurodevelopmental disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. McEwen BS . Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 2005; 54: 20–23.

    Article  CAS  Google Scholar 

  2. Manji HK, Drevets WC, Charney DS . The cellular neurobiology of depression. Nat Med 2001; 7: 541–547.

    Article  CAS  Google Scholar 

  3. Koenig JI, Kirkpatrick B, Lee P . Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology 2002; 27: 309–318.

    Article  CAS  Google Scholar 

  4. De kloet ER, Joëls M, Holsboer F . Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463–475.

    Article  CAS  Google Scholar 

  5. McEwen BS . Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22: 105–122.

    Article  CAS  Google Scholar 

  6. Cerqueira JJ, Pêgo JM, Taipa R, Bessa JM, Almeida OF, Sousa N . Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 2005; 25: 7792–7800.

    Article  CAS  Google Scholar 

  7. Mitra R, Sapolsky RM . Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc Natl Acad Sci USA 2008; 105: 5573–5578.

    Article  CAS  Google Scholar 

  8. Bakker JM, Bel FV, Heijnen CJ . Neonatal glucocorticoids and the developing brain: short-term treatment with life-long consequences? Trends Neurosci 2001; 24: 649–653.

    Article  CAS  Google Scholar 

  9. Stéphane VS, Borradori-Tolsa C, Vauthay DM, Lodygensky G, Lazeyras F, Hüppi PS . Impact of intrauterine growth restriction and glucocorticoids on brain development: insights using advanced magnetic resonance imaging. Mol Cell Endocrinol 2006; 254-255: 163–171.

    Article  Google Scholar 

  10. Weinstock M . The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 2008; 32: 1073–1086.

    Article  CAS  Google Scholar 

  11. Becker JB, Monteqqia LM, Perrot-Sinal TS, Romeo RD, Taylor JR, Yehuda R et al. Stress and disease: is being female a predisposing factor? J Neurosci 2007; 27: 11851–11855.

    Article  CAS  Google Scholar 

  12. Phillips NK, Hammen CL, Brennan PA, Najman JM, Bor W . Early adversity and the prospective prediction of depressive and anxiety disorders in adolescents. J Abnorm Child Psychol 2005; 33: 13–24.

    Article  Google Scholar 

  13. Flagel SB, Vázquez DM, Watson Jr SJ, Neal Jr CR . Effects of tapering neonatal dexamethasone on rat growth, neurodevelopment, and stress response. Am J Physiol Regul Integr Comp Physiol 2002; 282: R55–R63.

    Article  CAS  Google Scholar 

  14. Huang WL, Beazley LD, Quinlivan JA, Evans SF, Newnham JP, Dunlop SA . Effect of corticosteroids on brain growth in fetal sheep. Obstet Gynecol 1999; 94: 213–218.

    CAS  PubMed  Google Scholar 

  15. Modi N, Lewis H, Al-Naqeeb N, Ajayi-Obe M, Doré CJ, Rutherford M . The effects of repeated antenatal glucocorticoid therapy on the developing brain. Pediatri Res 2001; 50: 581–585.

    Article  CAS  Google Scholar 

  16. Dehay C, Kennedy H . Cell-cycle control and cortical development. Nat Rev Neurosci 2007; 8: 438–450.

    Article  CAS  Google Scholar 

  17. Ayala R, Shu T, Tsai LH . Trekking across the brain: the journey of neuronal migration. Cell 2007; 128: 29–43.

    Article  CAS  Google Scholar 

  18. Gleeson JG, Walsh CA . Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci 2000; 8: 352–359.

    Article  Google Scholar 

  19. Lavado-Autric R, Ausó E, García-Velasco JV, Arufe Mdel C, Escobar del Rey F, Berbel P et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest 2003; 111: 1073–1082.

    Article  CAS  Google Scholar 

  20. Ausó E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale De Escobar G, Berbel P . A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 2004; 145: 4037–4047.

    Article  Google Scholar 

  21. Konno J, Yoshida S, Ina A, Ohmomo H, Shutoh F, Nogami H et al. Upregulated expression of neuropeptide Y in hypothalamic–pituitary system of rats by chronic dexamethasone administration. Neurosci Res 2008; 60: 259–265.

    Article  CAS  Google Scholar 

  22. Wong EY, Herbert J . Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus. Eur J Neurosci 2005; 22: 785–792.

    Article  Google Scholar 

  23. Mayanagi T, Morita T, Hayashi K, Fukumoto K, Sobue K . Glucocorticoid receptor-mediated expression of caldesmon regulates cell migration via the reorganization of the actin cytoskeleton. J Biol Chem 2008; 283: 31183–31196.

    Article  CAS  Google Scholar 

  24. Konno D, Yoshimura S, Hori K, Maruoka H, Sobue K . Involvement of the phosphatidylinositol 3-kinase/rac1 and cdc42 pathways in radial migration of cortical neurons. J Biol Chem 2005; 280: 5082–5088.

    Article  CAS  Google Scholar 

  25. Li HP, Honma S, Miki T, Takeuchi Y, Kawano H . Multiple defects in the formation of rat cortical axonal pathways following prenatal X-ray irradiation. Eur J Neurosci 2005; 21: 1847–1858.

    Article  Google Scholar 

  26. Giorno R . A comparison of two immunoperoxidase staining methods based on the avidin-biotin interaction. Diagn Immunol 1984; 2: 161–166.

    CAS  PubMed  Google Scholar 

  27. Mishima T, Sakatani S, Hirase H . Intracellular labeling of single cortical astrocytes in vivo. J Neurosci Methods 2007; 166: 32–40.

    Article  CAS  Google Scholar 

  28. Matthews SG . Antenatal glucocorticoids and the developing brain; mechanisms of action. Semin Neonatol 2001; 6: 309–317.

    Article  CAS  Google Scholar 

  29. Diaz R, Brown RW, Seckl JR . Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11β-Hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J Neurosci 1998; 18: 2570–2580.

    Article  CAS  Google Scholar 

  30. Slotkin TA, Kreider ML, Tate CA, Seidler FJ . Prenatal and postnatal periods for persistent effects of dexamethasone on serotonergic and dopaminergic systems. Neuropsychopharmacology 2006; 31: 904–911.

    Article  CAS  Google Scholar 

  31. Sobue K, Sellers JR . Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem 1991; 266: 12115–12118.

    CAS  PubMed  Google Scholar 

  32. Hayashi K, Yano H, Hashida T, Takeuchi R, Takeda O, Asada K et al. Genomic structure of the human caldesmon gene. Proc Natl Acad Sci USA 1992; 89: 12122–12126.

    Article  CAS  Google Scholar 

  33. Bowers SL, Bilbo SD, Dhabhar FS, Nelson RJ . Stressor-specific alterations in corticosterone and immune responses in mice. Brain Behav Immun 2008; 22: 105–113.

    Article  CAS  Google Scholar 

  34. Morita T, Mayanagi T, Sobue K . Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. J Cell Biol 2007; 179: 1027–1042.

    Article  CAS  Google Scholar 

  35. Heine VM, Rowitch DH . Hedgehog signaling has a protective effect in glucocorticoid-induced mouse neonatal brain injury through an 11âHSD2-dependent mechanism. J Clin Invest 2009; 119: 267–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sobue K, Muramoto Y, Fujita M, Kakiuchi S . Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci USA 1981; 78: 5652–5655.

    Article  CAS  Google Scholar 

  37. Hayashi K, Nakamura S, Nishida W, Sobue K . Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription. Mol Cell Biol 2006; 26: 9456–9470.

    Article  CAS  Google Scholar 

  38. Castellino F, Heuser J, Marchetti S, Bruno B, Luini A . Glucocorticoid stabilization of actin filaments: a possible mechanism for inhibition of corticotropin release. Proc Natl Acad Sci USA 1992; 89: 3775–3779.

    Article  CAS  Google Scholar 

  39. Antonow-Schlorke I, Schwab M, Li C, Nathanielsz PW . Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain. J Physiol 2003; 547: 117–123.

    Article  CAS  Google Scholar 

  40. Cereseto M, Reinés A, Ferrero A, Sifonios L, Rubio M, Wikinski S . Chronic treatment with high doses of corticosterone decreases cytoskeletal proteins in the rat hippocampus. Eur J Neurosci 2006; 24: 3354–3364.

    Article  Google Scholar 

  41. Datson NA, Van der Perk J, De Kloet ER, Vreugdenhil E . Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 2001; 14: 675–689.

    Article  CAS  Google Scholar 

  42. Alfonso J, Pollevick GD, Van Der Hart MG, Flüqqe G, Fuchs E, Frasch AC . Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. Eur J Neurosci 2004; 19: 659–666.

    Article  Google Scholar 

  43. Morita T, Mayanagi T, Yoshio T, Sobue K . Changes in the balance between caldesmon regulated by p21-activated kinases and the Arp2/3 complex govern podosome formation. J Biol Chem 2007; 282: 8454–8463.

    Article  CAS  Google Scholar 

  44. Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM . Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat Cell Biol 2007; 9: 299–309.

    Article  CAS  Google Scholar 

  45. Tabata H, Nakajima K . Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 2003; 23: 9996–10001.

    Article  CAS  Google Scholar 

  46. Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR . Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004; 7: 136–144.

    Article  CAS  Google Scholar 

  47. Nagano T, Yoneda T, Hatanaka Y, Kubota C, Murakami F, Sato M . Filamin A-interacting protein (FILIP) regulates cortical cell migration out of the ventricular zone. Nat Cell Biol 2002; 4: 495–501.

    Article  CAS  Google Scholar 

  48. Tsai JW, Chen Y, Krieqstein AR, Vallee RB . LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 2005; 170: 935–945.

    Article  CAS  Google Scholar 

  49. Bai J, Ramos RL, Ackman JB, Thomas AM, Lee RV, LoTurco JJ . RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat Neurosci 2003; 6: 1277–1283.

    Article  CAS  Google Scholar 

  50. Xie Z, Tsai LH . Cdk5 phosphorylation of FAK regulates centrosome-associated miocrotubules and neuronal migration. Cell Cycle 2004; 3: 108–110.

    Article  CAS  Google Scholar 

  51. Ohshima T, Hirasawa M, Tabata H, Mutoh T, Adachi T, Suzuki H et al. Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 2007; 134: 2273–2282.

    Article  CAS  Google Scholar 

  52. Meaney MJ, Szyf M . Maternal care as a model for experience-dependent chromatin plasticity? Trends Neurosci 2005; 28: 456–463.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr S Furukawa (Gifu Pharmaceutical University) for advice on the in utero electroporation technique. This research was supported by Grant-in-Aids for Scientific Research (20240038) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (KS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Sobue.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukumoto, K., Morita, T., Mayanagi, T. et al. Detrimental effects of glucocorticoids on neuronal migration during brain development. Mol Psychiatry 14, 1119–1131 (2009). https://doi.org/10.1038/mp.2009.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.60

Keywords

This article is cited by

Search

Quick links