Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Global proteomic profiling reveals altered proteomic signature in schizophrenia serum

Abstract

Schizophrenia is one of the most severe psychiatric disorders affecting 1% of the world population. There is yet no empirical method to validate the diagnosis of the disease. The identification of an underlying molecular alteration could lead to an improved disease understanding and may yield an objective panel of biomarkers to aid in the diagnosis of this devastating disease. Presented is the largest reported liquid chromatography-mass spectrometry-based proteomic profiling study investigating serum samples taken from first-onset drug-naive patients compared with samples collected from healthy volunteers. The results of this large-scale study are presented along with enzyme-linked immunosorbent assay-based validation data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D . A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med 2004; 2: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saha S, Chant D, Welham J, McGrath J . A systematic review of the prevalence of schizophrenia. PLoS Med 2005; 2: e141.

    Article  PubMed  PubMed Central  Google Scholar 

  3. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    Article  PubMed  Google Scholar 

  4. Rossler W, Salize HJ, van Os J, Riecher-Rossler A . Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol 2005; 15: 399–409.

    Article  CAS  PubMed  Google Scholar 

  5. Gao J, Garulacan LA, Storm SM, Opiteck GJ, Dubaquie Y, Hefta SA et al. Biomarker discovery in biological fluids. Methods 2005; 35: 291–302.

    Article  CAS  PubMed  Google Scholar 

  6. Gygi SP, Han DK, Gingras AC, Sonenberg N, Aebersold R . Protein analysis by mass spectrometry and sequence database searching: tools for cancer research in the post-genomic era. Electrophoresis 1999; 20: 310–319.

    Article  CAS  PubMed  Google Scholar 

  7. Chan KC, Lucas DA, Hise D, Schaefer CF, Xiao Z, Janini GM et al. Analysis of the human serum proteome. Clin Proteomics 2004; 1: 101–226.

    Article  Google Scholar 

  8. Anderson NL, Anderson NG . The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1: 845–867.

    Article  CAS  PubMed  Google Scholar 

  9. Hoffman SA, Joo WA, Echan LA, Speicher DW . Higher dimensional (Hi-D) separation strategies dramatically improve the potential for cancer biomarker detection in serum and plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849: 43–52.

    Article  CAS  PubMed  Google Scholar 

  10. Levin Y, Schwarz E, Wang L, Leweke FM, Bahn S . Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J Sep Sci 2007; 30: 2198–2203.

    Article  CAS  PubMed  Google Scholar 

  11. A novel ion accounting algorithm for protein database searches. Proceedings of the Human Proteome Organisation (HUPO) 5th Annual World Congress. Long Beach, CA, 2006.

  12. Vissers JPC, Langridge JI, Aerts J . Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics 2007; 6: 755.

    Article  CAS  PubMed  Google Scholar 

  13. Schwarz E, Levin Y, Wang L, Leweke FM, Bahn S . Peptide correlation: a means to identify high quality quantitative information in large-scale proteomic studies. J Sep Sci 2007; 30: 2190–2197.

    Article  CAS  PubMed  Google Scholar 

  14. Tissot JD, Sanchez JC, Vuadens F, Scherl A, Schifferli JA, Hochstrasser DF et al. IgM are associated to Spa (CD5 antigen-like). Electrophoresis 2002; 23: 1203–1206.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar MS, Carson M, Hussain MM, Murthy HM . Structures of apolipoprotein A-II and a lipid-surrogate complex provide insights into apolipoprotein-lipid interactions. Biochemistry 2002; 41: 11681–11691.

    Article  CAS  PubMed  Google Scholar 

  16. Rogers DP, Brouillette CG, Engler JA, Tendian SW, Roberts L, Mishra VK et al. Truncation of the amino terminus of human apolipoprotein A-I substantially alters only the lipid-free conformation. Biochemistry 1997; 36: 288–300.

    Article  CAS  PubMed  Google Scholar 

  17. Qu SJ, Fan HZ, Blanco-Vaca F, Pownall HJ . Effects of site-directed mutagenesis on the serine residues of human lecithin:cholesterol acyltransferase. Lipids 1994; 29: 803–809.

    Article  CAS  PubMed  Google Scholar 

  18. Hennuyer N, Poulain P, Madsen L, Berge RK, Houdebine LM, Branellec D et al. Beneficial effects of fibrates on apolipoprotein A-I metabolism occur independently of any peroxisome proliferative response. Circulation 1999; 99: 2445–2451.

    Article  CAS  PubMed  Google Scholar 

  19. Matsuuchi L, Gold MR, Travis A, Grosschedl R, DeFranco AL, Kelly RB . The membrane IgM-associated proteins MB-1 and Ig-beta are sufficient to promote surface expression of a partially functional B-cell antigen receptor in a nonlymphoid cell line. Proc Natl Acad Sci USA 1992; 89: 3404–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masson D, Pais de Barros JP, Zak Z, Gautier T, Le Guern N, Assem M et al. Human apoA-I expression in CETP transgenic rats leads to lower levels of apoC-I in HDL and to magnification of CETP-mediated lipoprotein changes. J Lipid Res 2006; 47: 356–365.

    Article  CAS  PubMed  Google Scholar 

  21. Ezeh B, Haiman M, Alber HF, Kunz B, Paulweber B, Lingenhel A et al. Plasma distribution of apoA-IV in patients with coronary artery disease and healthy controls. J Lipid Res 2003; 44: 1523–1529.

    Article  CAS  PubMed  Google Scholar 

  22. Francis GA, Fayard E, Picard F, Auwerx J . Nuclear receptors and the control of metabolism. Annu Rev Physiol 2003; 65: 261–311.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Sparks DL, Marcel YL . Specific phospholipid association with apolipoprotein A-I stimulates cholesterol efflux from human fibroblasts. Studies with reconstituted sonicated lipoproteins. J Biol Chem 1996; 271: 25145–25151.

    Article  CAS  PubMed  Google Scholar 

  24. Gabay C, Kushner I . Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340: 448–454.

    Article  CAS  PubMed  Google Scholar 

  25. Poon TC, Yip TT, Chan AT, Yip C, Yip V, Mok TS et al. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes. Clin Chem 2003; 49: 752–760.

    Article  CAS  PubMed  Google Scholar 

  26. Jong MC, Dahlmans VE, van Gorp PJ, van Dijk KW, Breuer ML, Hofker MH et al. In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest 1996; 98: 2259–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koldamova RP, Lefterov IM, Ikonomovic MD, Skoko J, Lefterov PI, Isanski BA et al. 22R-Hydroxycholesterol and 9-cis-retinoic acid induce ABCA1 transporter expression and cholesterol efflux in brain cells and decrease Abeta secretion. J Biol Chem 2003; 278: 13244–13256.

    Article  CAS  PubMed  Google Scholar 

  28. Naiki T, Nagaki M, Shidoji Y, Kojima H, Imose M, Kato T et al. Analysis of gene expression profile induced by hepatocyte nuclear factor 4alpha in hepatoma cells using an oligonucleotide microarray. J Biol Chem 2002; 277: 14011–14019.

    Article  CAS  PubMed  Google Scholar 

  29. Thiele C, Hannah MJ, Fahrenholz F, Huttner WB . Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol 2000; 2: 42–49.

    Article  CAS  PubMed  Google Scholar 

  30. Borhani DW, Rogers DP, Engler JA, Brouillette CG . Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci USA 1997; 94: 12291–12296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Escolà-Gil JC, Marzal-Casacuberta A, Julve-Gil J, Ishida BY, Ordóñez-Llanos J, Chan L et al. Human apolipoprotein A-II is a pro-atherogenic molecule when it is expressed in transgenic mice at a level similar to that in humans: evidence of a potentially relevant species-specific interaction with diet. J Lipid Res 1998; 39: 457–462.

    PubMed  Google Scholar 

  32. Oliveira HC, Chouinard RA, Agellon LB, Bruce C, Ma L, Walsh A et al. Human cholesteryl ester transfer protein gene proximal promoter contains dietary cholesterol positive responsive elements and mediates expression in small intestine and periphery while predominant liver and spleen expression is controlled by 5′-distal sequences. Cis-acting sequences mapped in transgenic mice. J Biol Chem 1996; 271: 31831–31838.

    Article  CAS  PubMed  Google Scholar 

  33. Jensen LE, Whitehead AS . Regulation of serum amyloid A protein expression during the acute-phase response. Biochem J 1998; 334 (Part 3): 489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Masson D, Staels B, Gautier T, Desrumaux C, Athias A, Le Guern N et al. Cholesteryl ester transfer protein modulates the effect of liver X receptor agonists on cholesterol transport and excretion in the mouse. J Lipid Res 2004; 45: 543–550.

    Article  CAS  PubMed  Google Scholar 

  35. Zhong S, Goldberg IJ, Bruce C, Rubin E, Breslow JL, Tall A . Human ApoA-II inhibits the hydrolysis of HDL triglyceride and the decrease of HDL size induced by hypertriglyceridemia and cholesteryl ester transfer protein in transgenic mice. J Clin Invest 1994; 94: 2457–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muurling M, Van Den Hoek AM, Mensink RP, Pijl H, Romijn JA, Havekes LM et al. Overexpression of APOC1 in obob mice leads to hepatic steatosis and severe hepatic insulin resistance. J Lipid Res 2004; 45: 9–16.

    Article  CAS  PubMed  Google Scholar 

  37. Jeffrey PD, Bewley MC, MacGillivray RT, Mason AB, Woodworth RC, Baker EN . Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Biochemistry 1998; 37: 13978–13986.

    Article  CAS  PubMed  Google Scholar 

  38. Okuhira K, Tsujita M, Yamauchi Y, Abe-Dohmae S, Kato K, Handa T et al. Potential involvement of dissociated apoA-I in the ABCA1-dependent cellular lipid release by HDL. J Lipid Res 2004; 45: 645–652.

    Article  CAS  PubMed  Google Scholar 

  39. Wong L, Curtiss LK, Huang J, Mann CJ, Maldonado B, Roheim PS . Altered epitope expression of human interstitial fluid apolipoprotein A-I reduces its ability to activate lecithin cholesterol acyl transferase. J Clin Invest 1992; 90: 2370–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL . In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA 1993; 90: 12040–12044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rubin EM, Ishida BY, Clift SM, Krauss RM . Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci USA 1991; 88: 434–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, Okuhira K, Ueda K et al. Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem 2004; 279: 604–611.

    Article  CAS  PubMed  Google Scholar 

  43. Sparks DL, Frank PG, Braschi S, Neville TA, Marcel YL . Effect of apolipoprotein A-I lipidation on the formation and function of pre-beta and alpha-migrating LpA-I particles. Biochemistry 1999; 38: 1727–1735.

    Article  CAS  PubMed  Google Scholar 

  44. Luker GD, Dahlheimer JL, Ostlund Jr RE, Piwnica-Worms D . Decreased hepatic accumulation and enhanced esterification of cholesterol in mice deficient in mdr1a and mdr1b P-glycoproteins. J Lipid Res 2001; 42: 1389–1394.

    CAS  PubMed  Google Scholar 

  45. Amar MJ, Dugi KA, Haudenschild CC, Shamburek RD, Foger B, Chase M et al. Hepatic lipase facilitates the selective uptake of cholesteryl esters from remnant lipoproteins in apoE-deficient mice. J Lipid Res 1998; 39: 2436–2442.

    CAS  PubMed  Google Scholar 

  46. Ito J, Nagayasu Y, Kato K, Sato R, Yokoyama S . Apolipoprotein A-I induces translocation of cholesterol, phospholipid, and caveolin-1 to cytosol in rat astrocytes. J Biol Chem 2002; 277: 7929–7935.

    Article  CAS  PubMed  Google Scholar 

  47. Pussinen PJ, Jauhiainen M, Metso J, Pyle LE, Marcel YL, Fidge NH et al. Binding of phospholipid transfer protein (PLTP) to apolipoproteins A-I and A-II: location of a PLTP binding domain in the amino terminal region of apoA-I. J Lipid Res 1998; 39: 152–161.

    CAS  PubMed  Google Scholar 

  48. Julve J, Escola-Gil JC, Ribas V, Gonzalez-Sastre F, Ordonez-Llanos J, Sanchez-Quesada JL et al. Mechanisms of HDL deficiency in mice overexpressing human apoA-II. J Lipid Res 2002; 43: 1734–1742.

    Article  CAS  PubMed  Google Scholar 

  49. Jong MC, Dahlmans VE, van Gorp PJ, Breuer ML, Mol MJ, van der Zee A et al. Both lipolysis and hepatic uptake of VLDL are impaired in transgenic mice coexpressing human apolipoprotein E*3Leiden and human apolipoprotein C1. Arterioscler Thromb Vasc Biol 1996; 16: 934–940.

    Article  CAS  PubMed  Google Scholar 

  50. Roosbeek S, Vanloo B, Duverger N, Caster H, Breyne J, De Beun I et al. Three arginine residues in apolipoprotein A-I are critical for activation of lecithin:cholesterol acyltransferase. J Lipid Res 2001; 42: 31–40.

    CAS  PubMed  Google Scholar 

  51. Soumian S, Albrecht C, Davies AH, Gibbs RG . ABCA1 and atherosclerosis. Vasc Med 2005; 10: 109–119.

    Article  CAS  PubMed  Google Scholar 

  52. Field FJ, Albright EJ, Mathur SN . Effect of dietary n-3 fatty acids on HMG-CoA reductase and ACAT activities in liver and intestine of the rabbit. J Lipid Res 1987; 28: 50–58.

    CAS  PubMed  Google Scholar 

  53. Gillotte-Taylor K, Nickel M, Johnson WJ, Francone OL, Holvoet P, Lund-Katz S et al. Effects of enrichment of fibroblasts with unesterified cholesterol on the efflux of cellular lipids to apolipoprotein A-I. J Biol Chem 2002; 277: 11811–11820.

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Driscoll DM, Morton RE . Molecular cloning and expression of lipid transfer inhibitor protein reveals its identity with apolipoprotein F. J Biol Chem 1999; 274: 1814–1820.

    Article  CAS  PubMed  Google Scholar 

  55. van Haperen R, van Tol A, Vermeulen P, Jauhiainen M, van Gent T, van den Berg P et al. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice. Arterioscler Thromb Vasc Biol 2000; 20: 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  56. Malik S, Karathanasis SK . TFIIB-directed transcriptional activation by the orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 1996; 16: 1824–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pastier D, Dugué S, Boisfer E, Atger V, Tran NQ, van Tol A et al. Apolipoprotein A-II/A-I ratio is a key determinant in vivo of HDL concentration and formation of pre-beta HDL containing apolipoprotein A-II. Biochemistry 2001; 40: 12243–12253.

    Article  CAS  PubMed  Google Scholar 

  58. Wang N, Lan D, Chen W, Matsuura F, Tall AR . ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA 2004; 101: 9774–9779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duchateau PN, Pullinger CR, Orellana RE, Kunitake ST, Naya-Vigne J, O’Connor PM et al. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L. J Biol Chem 1997; 272: 25576–25582.

    Article  CAS  PubMed  Google Scholar 

  60. Chen CH, Albers JJ . Interspecies activation of lecithin-cholesterol acyltransferase by apolipoprotein A-I isolated from the plasma of humans, horses, sheep, goats and rabbits. Biochim Biophys Acta 1983; 753: 40–46.

    Article  CAS  PubMed  Google Scholar 

  61. Minnich A, Collet X, Roghani A, Cladaras C, Hamilton RL, Fielding CJ et al. Site-directed mutagenesis and structure-function analysis of the human apolipoprotein A-I. Relation between lecithin-cholesterol acyltransferase activation and lipid binding. J Biol Chem 1992; 267: 16553–16560.

    CAS  PubMed  Google Scholar 

  62. Igbavboa U, Pidcock JM, Johnson LN, Malo TM, Studniski AE, Yu S et al. Cholesterol distribution in the Golgi complex of DITNC1 astrocytes is differentially altered by fresh and aged amyloid beta-peptide-(1–42). J Biol Chem 2003; 278: 17150–17157.

    Article  CAS  PubMed  Google Scholar 

  63. Dichek HL, Brecht W, Fan J, Ji ZS, McCormick SP, Akeefe H et al. Overexpression of hepatic lipase in transgenic mice decreases apolipoprotein B-containing and high density lipoproteins. Evidence that hepatic lipase acts as a ligand for lipoprotein uptake. J Biol Chem 1998; 273: 1896–1903.

    Article  CAS  PubMed  Google Scholar 

  64. Cheema SK, Agarwal-Mawal A, Murray CM, Tucker S . Lack of stimulation of cholesteryl ester transfer protein by cholesterol in the presence of a high-fat diet. J Lipid Res 2005; 46: 2356–2366.

    Article  CAS  PubMed  Google Scholar 

  65. Abe-Dohmae S, Kato KH, Kumon Y, Hu W, Ishigami H, Iwamoto N et al. Serum amyloid A generates high density lipoprotein with cellular lipid in an ABCA1- or ABCA7-dependent manner. J Lipid Res 2006; 47: 1542–1550.

    Article  CAS  PubMed  Google Scholar 

  66. Moerland M, Samyn H, van Gent T, Jauhiainen M, Metso J, van Haperen R et al. Atherogenic, enlarged, and dysfunctional HDL in human PLTP/apoA-I double transgenic mice. J Lipid Res 2007; 48: 2622–2631.

    Article  CAS  PubMed  Google Scholar 

  67. Roberts LM, Ray MJ, Shih TW, Hayden E, Reader MM, Brouillette CG . Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-free and lipid-bound human apo A-I. Biochemistry 1997; 36: 7615–7624.

    Article  CAS  PubMed  Google Scholar 

  68. Yang CY, Gu ZW, Blanco-Vaca F, Gaskell SJ, Yang M, Massey JB et al. Structure of human apolipoprotein D: locations of the intermolecular and intramolecular disulfide links. Biochemistry 1994; 33: 12451–12455.

    Article  CAS  PubMed  Google Scholar 

  69. Servillo L, Brewer HB, Osborne JC . Evaluation of the mixed interaction between apolipoproteins A-II and C-I equilibrium sedimentation. Biophys Chem 1981; 13: 29–38.

    Article  CAS  PubMed  Google Scholar 

  70. Pl?sch T, Kok T, Bloks VW, Smit MJ, Havinga R, Chimini G et al. Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1. J Biol Chem 2002; 277: 33870–33877.

    Article  PubMed  Google Scholar 

  71. Fielding PE, Nagao K, Hakamata H, Chimini G, Fielding CJ . A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 2000; 39: 14113–14120.

    Article  CAS  PubMed  Google Scholar 

  72. Field FJ, Mathur SN . Regulation of acyl CoA:cholesterol acyltransferase by 25-hydroxycholesterol in rabbit intestinal microsomes and absorptive cells. J Lipid Res 1983; 24: 1049–1059.

    CAS  PubMed  Google Scholar 

  73. Forte TM, Bielicki JK, Goth-Goldstein R, Selmek J, McCall MR . Recruitment of cell phospholipids and cholesterol by apolipoproteins A-II and A-I: formation of nascent apolipoprotein-specific HDL that differ in size, phospholipid composition, and reactivity with LCAT. J Lipid Res 1995; 36: 148–157.

    CAS  PubMed  Google Scholar 

  74. Chajek-Shaul T, Hayek T, Walsh A, Breslow JL . Expression of the human apolipoprotein A-I gene in transgenic mice alters high density lipoprotein (HDL) particle size distribution and diminishes selective uptake of HDL cholesteryl esters. Proc Natl Acad Sci USA 1991; 88: 6731–6735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ely KR, Herron JN, Harker M, Edmundson AB . Three-dimensional structure of a light chain dimer crystallized in water. Conformational flexibility of a molecule in two crystal forms. J Mol Biol 1989; 210: 601–615.

    Article  CAS  PubMed  Google Scholar 

  76. van den Maagdenberg AM, Hofker MH, Krimpenfort PJ, de Bruijn I, van Vlijmen B, van der Boom H et al. Transgenic mice carrying the apolipoprotein E3-Leiden gene exhibit hyperlipoproteinemia. J Biol Chem 1993; 268: 10540–10545.

    CAS  PubMed  Google Scholar 

  77. Frutiger S, Hughes GJ, Paquet N, Luthy R, Jaton JC . Disulfide bond assignment in human J chain and its covalent pairing with immunoglobulin M. Biochemistry 1992; 31: 12643–12647.

    Article  CAS  PubMed  Google Scholar 

  78. Dugi KA, Amar MJ, Haudenschild CC, Shamburek RD, Bensadoun A, Hoyt RF et al. In vivo evidence for both lipolytic and nonlipolytic function of hepatic lipase in the metabolism of HDL. Arterioscler Thromb Vasc Biol 2000; 20: 793–800.

    Article  CAS  PubMed  Google Scholar 

  79. Brown RJ, Miller GC, Griffon N, Long CJ, Rader DJ . Glycosylation of endothelial lipase at asparagine-116 reduces activity and the hydrolysis of native lipoproteins in vitro and in vivo. J Lipid Res 2007; 48: 1132–1139.

    Article  CAS  PubMed  Google Scholar 

  80. Edwards PA, Ericsson J . Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem 1999; 68: 157–185.

    Article  CAS  PubMed  Google Scholar 

  81. Glass CK, Witztum JL . Atherosclerosis. the road ahead. Cell 2001; 104: 503–516.

    Article  CAS  PubMed  Google Scholar 

  82. González-Navarro H, Nong Z, Amar MJ, Shamburek RD, Najib-Fruchart J, Paigen BJ et al. The ligand-binding function of hepatic lipase modulates the development of atherosclerosis in transgenic mice. J Biol Chem 2004; 279: 45312–45321.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou M, Lucas DA, Chan KC, Issaq HJ, Petricoin EF, Liotta LA et al. An investigation into the human serum ‘interactome’. Electrophoresis 2004; 25: 1289–1298.

    Article  CAS  PubMed  Google Scholar 

  84. Hu W, Abe-Dohmae S, Tsujita M, Iwamoto N, Ogikubo O, Otsuka T et al. Biogenesis of HDL by SAA is dependent on ABCA1 in the liver in vivo. J Lipid Res 2008; 49: 386–393.

    Article  CAS  PubMed  Google Scholar 

  85. Klucken J, Büchler C, Orsó E, Kaminski WE, Porsch-Ozcürümez M, Liebisch G et al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci USA 2000; 97: 817–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L et al. Apolipoprotein D. Biochim Biophys Acta 2000; 1482: 185–198.

    Article  CAS  PubMed  Google Scholar 

  87. Wang L, Han Y, Kim CS, Lee YK, Moore DD . Resistance of SHP-null mice to bile acid-induced liver damage. J Biol Chem 2003; 278: 44475–44481.

    Article  CAS  PubMed  Google Scholar 

  88. Kärkkäinen M, Oka T, Olkkonen VM, Metso J, Hattori H, Jauhiainen M et al. Isolation and partial characterization of the inactive and active forms of human plasma phospholipid transfer protein (PLTP). J Biol Chem 2002; 277: 15413–15418.

    Article  CAS  PubMed  Google Scholar 

  89. Masson D, Duverger N, Emmanuel F, Lagrost L . Differential interaction of the human cholesteryl ester transfer protein with plasma high density lipoproteins (HDLs) from humans, control mice, and transgenic mice to human HDL apolipoproteins. Lack of lipid transfer inhibitory activity in transgenic mice expressing human apoA-I. J Biol Chem 1997; 272: 24287–24293.

    Article  CAS  PubMed  Google Scholar 

  90. Borst P, Elferink RO . Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71: 537–592.

    Article  CAS  PubMed  Google Scholar 

  91. Cho KH, Jonas A . A key point mutation (V156E) affects the structure and functions of human apolipoprotein A-I. J Biol Chem 2000; 275: 26821–26827.

    CAS  PubMed  Google Scholar 

  92. Fielding PE, Russel JS, Spencer TA, Hakamata H, Nagao K, Fielding CJ . Sterol efflux to apolipoprotein A-I originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry 2002; 41: 4929–4937.

    Article  CAS  PubMed  Google Scholar 

  93. Schwarz M, Russell DW, Dietschy JM, Turley SD . Alternate pathways of bile acid synthesis in the cholesterol 7alpha-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. J Lipid Res 2001; 42: 1594–1603.

    CAS  PubMed  Google Scholar 

  94. Furukawa Y, Urano T, Hida Y, Itoh H, Takahashi C, Kimura S . Interaction of rat lecithin-cholesterol acyltransferase with rat apolipoprotein A-I and with lecithin-cholesterol vesicles. J Biochem (Tokyo) 1992; 111: 413–418.

    Article  CAS  Google Scholar 

  95. Reschly EJ, Sorci-Thomas MG, Davidson WS, Meredith SC, Reardon CA, Getz GS . Apolipoprotein A-I alpha -helices 7 and 8 modulate high density lipoprotein subclass distribution. J Biol Chem 2002; 277: 9645–9654.

    Article  CAS  PubMed  Google Scholar 

  96. Ehnholm S, van Dijk KW, van ‘t Hof B, van der Zee A, Olkkonen VM, Jauhiainen M et al. Adenovirus mediated overexpression of human phospholipid transfer protein alters plasma HDL levels in mice. J Lipid Res 1998; 39: 1248–1253.

    CAS  PubMed  Google Scholar 

  97. Abe-Dohmae S, Suzuki S, Wada Y, Aburatani H, Vance DE, Yokoyama S . Characterization of apolipoprotein-mediated HDL generation induced by cAMP in a murine macrophage cell line. Biochemistry 2000; 39: 11092–11099.

    Article  CAS  PubMed  Google Scholar 

  98. Tiemann M, Han Z, Soccio R, Bollineni J, Shefer S, Sehayek E et al. Cholesterol feeding of mice expressing cholesterol 7alpha-hydroxylase increases bile acid pool size despite decreased enzyme activity. Proc Natl Acad Sci USA 2004; 101: 1846–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deeg MA, Bierman EL, Cheung MC . GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J Lipid Res 2001; 42: 442–451.

    CAS  PubMed  Google Scholar 

  100. Lie J, De Crom R, Van Gent T, Van Haperen R, Scheek L, Lankhuizen I et al. Elevation of plasma phospholipid transfer protein in transgenic mice increases VLDL secretion. J Lipid Res 2002; 43: 1875–1880.

    Article  CAS  PubMed  Google Scholar 

  101. Gautier T, Masson D, Jong MC, Duverneuil L, Le Guern N, Deckert V et al. Apolipoprotein CI deficiency markedly augments plasma lipoprotein changes mediated by human cholesteryl ester transfer protein (CETP) in CETP transgenic/ApoCI-knocked out mice. J Biol Chem 2002; 277: 31354–31363.

    Article  CAS  PubMed  Google Scholar 

  102. Kline GH, Hartwell L, Beck-Engeser GB, Keyna U, Zaharevitz S, Klinman NR et al. Pre-B cell receptor-mediated selection of pre-B cells synthesizing functional mu heavy chains. J Immunol 1998; 161: 1608–1618.

    CAS  PubMed  Google Scholar 

  103. Radaev S, Motyka S, Fridman WH, Sautes-Fridman C, Sun PD . The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem 2001; 276: 16469–16477.

    Article  CAS  PubMed  Google Scholar 

  104. Yamauchi Y, Chang CC, Hayashi M, Abe-Dohmae S, Reid PC, Chang TY et al. Intracellular cholesterol mobilization involved in the ABCA1/apolipoprotein-mediated assembly of high density lipoprotein in fibroblasts. J Lipid Res 2004; 45: 1943–1951.

    Article  CAS  PubMed  Google Scholar 

  105. Munehira Y, Ohnishi T, Kawamoto S, Furuya A, Shitara K, Imamura M et al. Alpha1-syntrophin modulates turnover of ABCA1. J Biol Chem 2004; 279: 15091–15095.

    Article  CAS  PubMed  Google Scholar 

  106. Steyrer E, Kostner GM . Activation of lecithin-cholesterol acyltransferase by apolipoprotein D: comparison of proteoliposomes containing apolipoprotein D, A-I or C-I. Biochim Biophys Acta 1988; 958: 484–491.

    Article  CAS  PubMed  Google Scholar 

  107. Buchko GW, Treleaven WD, Dunne SJ, Tracey AS, Cushley RJ . Structural studies of a peptide activator of human lecithin-cholesterol acyltransferase. J Biol Chem 1996; 271: 3039–3045.

    Article  CAS  PubMed  Google Scholar 

  108. Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W et al. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem 2003; 278: 42906–42912.

    Article  CAS  PubMed  Google Scholar 

  109. Daum U, Leren TP, Langer C, Chirazi A, Cullen P, Pritchard PH et al. Multiple dysfunctions of two apolipoprotein A-I variants, apoA-I(R160L)Oslo and apoA-I(P165R), that are associated with hypoalphalipoproteinemia in heterozygous carriers. J Lipid Res 1999; 40: 486–494.

    CAS  PubMed  Google Scholar 

  110. Ruminy P, Gangneux C, Claeyssens S, Scotte M, Daveau M, Salier JP . Gene transcription in hepatocytes during the acute phase of a systemic inflammation: from transcription factors to target genes. Inflamm Res 2001; 50: 383–390.

    Article  CAS  PubMed  Google Scholar 

  111. Conde-Knape K, Bensadoun A, Sobel JH, Cohn JS, Shachter NS . Overexpression of apoC-I in apoE-null mice: severe hypertriglyceridemia due to inhibition of hepatic lipase. J Lipid Res 2002; 43: 2136–2145.

    Article  CAS  PubMed  Google Scholar 

  112. Bae YS, Kim H . Interaction of human apolipoprotein A-I with dipalmitoylphosphatidylcholine in vesicular and micellar complexes. J Biochem (Tokyo) 1989; 106: 1019–1025.

    Article  CAS  Google Scholar 

  113. Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusy U, Rudling M et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 2001; 107: 565–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hanniman EA, Lambert G, McCarthy TC, Sinal CJ . Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J Lipid Res 2005; 46: 2595–2604.

    Article  CAS  PubMed  Google Scholar 

  115. Jauhiainen M, Huuskonen J, Baumann M, Metso J, Oka T, Egashira T et al. Phospholipid transfer protein (PLTP) causes proteolytic cleavage of apolipoprotein A-I. J Lipid Res 1999; 40: 654–664.

    CAS  PubMed  Google Scholar 

  116. Chisholm JW, Paterniti JR, Dolphin PJ . Accumulation of cholestatic lipoproteins in ANIT-treated human apolipoprotein A-I transgenic rats is diminished through dose-dependent apolipoprotein A-I activation of LCAT. Biochim Biophys Acta 2000; 1487: 145–154.

    Article  CAS  PubMed  Google Scholar 

  117. Scott BR, McManus DC, Franklin V, McKenzie AG, Neville T, Sparks DL et al. The N-terminal globular domain and the first class A amphipathic helix of apolipoprotein A-I are important for lecithin:cholesterol acyltransferase activation and the maturation of high density lipoprotein in vivo. J Biol Chem 2001; 276: 48716–48724.

    Article  CAS  PubMed  Google Scholar 

  118. Koren E, McConathy WJ, Alaupovic P . Isolation and characterization of simple and complex lipoproteins containing apolipoprotein F from human plasma. Biochemistry 1982; 21: 5347–5351.

    Article  CAS  PubMed  Google Scholar 

  119. Zhou H, Li Z, Hojjati MR, Jang D, Beyer TP, Cao G et al. Adipose tissue-specific CETP expression in mice: impact on plasma lipoprotein metabolism. J Lipid Res 2006; 47: 2011–2019.

    Article  CAS  PubMed  Google Scholar 

  120. Ito J, Nagayasu Y, Ueno S, Yokoyama S . Apolipoprotein-mediated cellular lipid release requires replenishment of sphingomyelin in a phosphatidylcholine-specific phospholipase C-dependent manner. J Biol Chem 2002; 277: 44709–44714.

    Article  CAS  PubMed  Google Scholar 

  121. Cazita PM, Berti JA, Aoki C, Gidlund M, Harada LM, Nunes VS et al. Cholesteryl ester transfer protein expression attenuates atherosclerosis in ovariectomized mice. J Lipid Res 2003; 44: 33–40.

    Article  CAS  PubMed  Google Scholar 

  122. Yu SH, McCormack FX, Voelker DR, Possmayer F . Interactions of pulmonary surfactant protein SP-A with monolayers of dipalmitoylphosphatidylcholine and cholesterol: roles of SP-A domains. J Lipid Res 1999; 40: 920–929.

    CAS  PubMed  Google Scholar 

  123. Maxwell KN, Soccio RE, Duncan EM, Sehayek E, Breslow JL . Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J Lipid Res 2003; 44: 2109–2119.

    Article  CAS  PubMed  Google Scholar 

  124. Harder C, Lau P, Meng A, Whitman SC, McPherson R . Cholesteryl ester transfer protein (CETP) expression protects against diet induced atherosclerosis in SR-BI deficient mice. Arterioscler Thromb Vasc Biol 2007; 27: 858–864.

    Article  CAS  PubMed  Google Scholar 

  125. Banka CL, Bonnet DJ, Black AS, Smith RS, Curtiss LK . Localization of an apolipoprotein A-I epitope critical for activation of lecithin-cholesterol acyltransferase. J Biol Chem 1991; 266: 23886–23892.

    CAS  PubMed  Google Scholar 

  126. Föger B, Chase M, Amar MJ, Vaisman BL, Shamburek RD, Paigen B et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J Biol Chem 1999; 274: 36912–36920.

    Article  PubMed  Google Scholar 

  127. Jin L, Shieh JJ, Grabbe E, Adimoolam S, Durbin D, Jonas A . Surface plasmon resonance biosensor studies of human wild-type and mutant lecithin cholesterol acyltransferase interactions with lipoproteins. Biochemistry 1999; 38: 15659–15665.

    Article  CAS  PubMed  Google Scholar 

  128. Escolà-Gil JC, Julve J, Marzal-Casacuberta A, Ordóñez-Llanos J, González-Sastre F, Blanco-Vaca F . Expression of human apolipoprotein A-II in apolipoprotein E-deficient mice induces features of familial combined hyperlipidemia. J Lipid Res 2000; 41: 1328–1338.

    PubMed  Google Scholar 

  129. Main LA, Ohnishi T, Yokoyama S . Activation of human plasma cholesteryl ester transfer protein by human apolipoprotein A-IV. Biochim Biophys Acta 1996; 1300: 17–24.

    Article  PubMed  Google Scholar 

  130. Antonov IV, Medvedeva NV, Misharin A, Morozkin AD, Ruuge EK . Recombinant models of lipoproteins. Apolipoprotein A-I/phosphatidylcholine/cholesterol complexes formed in a 2-chloroethanol-water mixture. Biochim Biophys Acta 1985; 835: 50–57.

    Article  CAS  PubMed  Google Scholar 

  131. Berbée JF, van der Hoogt CC, Sundararaman D, Havekes LM, Rensen PC . Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL. J Lipid Res 2005; 46: 297–306.

    Article  CAS  PubMed  Google Scholar 

  132. Gautier T, Masson D, de Barros JP, Athias A, Gambert P, Aunis D et al. Human apolipoprotein C-I accounts for the ability of plasma high density lipoproteins to inhibit the cholesteryl ester transfer protein activity. J Biol Chem 2000; 275: 37504–37509.

    Article  CAS  PubMed  Google Scholar 

  133. McManus DC, Scott BR, Franklin V, Sparks DL, Marcel YL . Proteolytic degradation and impaired secretion of an apolipoprotein A-I mutant associated with dominantly inherited hypoalphalipoproteinemia. J Biol Chem 2001; 276: 21292–21302.

    Article  CAS  PubMed  Google Scholar 

  134. Chroni A, Kan HY, Kypreos KE, Gorshkova IN, Shkodrani A, Zannis VI . Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice. Biochemistry 2004; 43: 10442–10457.

    Article  CAS  PubMed  Google Scholar 

  135. Tall A . Plasma lipid transfer proteins. Annu Rev Biochem 1995; 64: 235–257.

    Article  CAS  PubMed  Google Scholar 

  136. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 2005; 437: 1173–1178.

    Article  CAS  PubMed  Google Scholar 

  137. Arakawa R, Hayashi M, Remaley AT, Brewer BH, Yamauchi Y, Yokoyama S . Phosphorylation and stabilization of ATP binding cassette transporter A1 by synthetic amphiphilic helical peptides. J Biol Chem 2004; 279: 6217–6220.

    Article  CAS  PubMed  Google Scholar 

  138. Osawa M, Umetsu K, Sato M, Ohki T, Yukawa N, Suzuki T et al. Structure of the gene encoding human alpha 2-HS glycoprotein (AHSG). Gene 1997; 196: 121–125.

    Article  CAS  PubMed  Google Scholar 

  139. Lee JY, Badeau RM, Mulya A, Boudyguina E, Gebre AK, Smith TL et al. Functional LCAT deficiency in human apolipoprotein A-I transgenic, SR-BI knockout mice. J Lipid Res 2007; 48: 1052–1061.

    Article  PubMed  Google Scholar 

  140. Wang Y, Castoreno AB, Stockinger W, Nohturfft A . Modulation of endosomal cholesteryl ester metabolism by membrane cholesterol. J Biol Chem 2005; 280: 11876–11886.

    Article  CAS  PubMed  Google Scholar 

  141. Liu T, Krieger M, Kan HY, Zannis VI . The effects of mutations in helices 4 and 6 of ApoA-I on scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux suggest that formation of a productive complex between reconstituted high density lipoprotein and SR-BI is required for efficient lipid transport. J Biol Chem 2002; 277: 21576–21584.

    Article  CAS  PubMed  Google Scholar 

  142. Aviram M, Bierman EL, Chait A . Modification of low density lipoprotein by lipoprotein lipase or hepatic lipase induces enhanced uptake and cholesterol accumulation in cells. J Biol Chem 1988; 263: 15416–15422.

    CAS  PubMed  Google Scholar 

  143. Valledor AF, Hsu LC, Ogawa S, Sawka-Verhelle D, Karin M, Glass CK . Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc Natl Acad Sci USA 2004; 101: 17813–17818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Huang JT, Wang L, Prabakaran S, Wengenroth M, Lockstone HE, Koethe D et al. Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues. Mol Psychiatry 2008; 13: 1118–1128.

    Article  CAS  PubMed  Google Scholar 

  145. Mimmack ML, Ryan M, Baba H, Navarro-Ruiz J, Iritani S, Faull RLM et al. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci USA 2002; 99: 4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Thomas EA, Dean B, Scarr E, Copolov D, Sutcliffe JG . Differences in neuroanatomical sites of apoD elevation discriminate between schizophrenia and bipolar disorder. Mol Psychiatry 2003; 8: 167–175.

    Article  CAS  PubMed  Google Scholar 

  147. Thomas EA, Dean B, Pavey G, Sutcliffe JG . Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci USA 2001; 98: 4066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jiang L, Lindpaintner K, Li HF, Gu NF, Langen H, He L et al. Proteomic analysis of the cerebrospinal fluid of patients with schizophrenia. Amino Acids 2003; 25: 49–57.

    Article  CAS  PubMed  Google Scholar 

  149. Mero N, Van Tol A, Scheek LM, Van Gent T, Labeur C, Rosseneu M et al. Decreased postprandial high density lipoprotein cholesterol and apolipoproteins AI and E in normolipidemic smoking men relations with lipid transfer proteins and LCAT activities. J Lipid Res 1998; 39: 1493–1502.

    CAS  PubMed  Google Scholar 

  150. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JTJ, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697.

    Article  CAS  PubMed  Google Scholar 

  151. Bossy-Wetzel E, Talantova MV, Lee WD, Schölzke MN, Harrop A, Mathews E et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 2004; 41: 351–365.

    Article  CAS  PubMed  Google Scholar 

  152. Reiss AB . Cholesterol and apolipoprotein E in Alzheimer's disease. Am J Alzheimers Dis Other Demen 2005; 20: 91.

    Article  PubMed  Google Scholar 

  153. Boes M . Role of natural and immune IgM antibodies in immune responses. Mol Immunol 2000; 37: 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  154. Rothermundt M, Arolt V, Bayer TA . Review of immunological and immunopathological findings in schizophrenia. Brain Behav Immun 2001; 15: 319–339.

    Article  CAS  PubMed  Google Scholar 

  155. Legros S, Mendlewicz J, Wybran J . Immunoglobulins, autoantibodies and other serum protein fractions in psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 1985; 235: 9–11.

    Article  CAS  Google Scholar 

  156. Sane AS, Chawla MS, Chokshi SA, Mathur V, Barad DP, Shah VC et al. Serum immunoglobulin status of psychiatric in-patients. Panminerva Med 1990; 32: 88–91.

    CAS  PubMed  Google Scholar 

  157. Chong-Thim W, Wing-Foo T, Nilmani S . Serum immunoglobulin levels in Chinese male schizophrenics. Schizophr Res 1993; 10: 61–66.

    Article  CAS  PubMed  Google Scholar 

  158. Delisi LE, Weinberger DR, Potkin S, Neckers LM, Shiling DJ, Wyatt RJ . Quantitative determination of immunoglobulins in CSF and plasma of chronic schizophrenic patients. Br J Psychiatry 1981; 139: 513.

    Article  CAS  PubMed  Google Scholar 

  159. Sarrias MR, Rosello S, Sanchez-Barbero F, Sierra JM, Vila J, Yelamos J et al. A role for human SP {alpha} as a pattern recognition receptor. J Biol Chem 2005; 280: 35391.

    Article  CAS  PubMed  Google Scholar 

  160. Gebe JA, Kiener PA, Ring HZ, Li X, Francke U, Aruffo A . Molecular cloning, mapping to human chromosome 1q21–q23, and cell binding characteristics of Spalpha, a new member of the scavenger receptor cysteine-rich (SRCR) family of proteins. J Biol Chem 1997; 272: 6151.

    Article  CAS  PubMed  Google Scholar 

  161. Stefan N, Hennige AM, Staiger H, Machann J, Schick F, Krober SM et al. Alpha2-Heremans–Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 2006; 29: 853–857.

    Article  CAS  PubMed  Google Scholar 

  162. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY . Reference distributions for the negative acute-phase serum proteins, albumin, transferrin, and transthyretin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal 1999; 13: 273–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was kindly funded by the Stanley Medical Research Institute and by Psynova Neurotech Ltd. We would like to express our appreciation to Paul Guest and Hassan Rahmoune for their input and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Bahn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, Y., Wang, L., Schwarz, E. et al. Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol Psychiatry 15, 1088–1100 (2010). https://doi.org/10.1038/mp.2009.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.54

Keywords

This article is cited by

Search

Quick links