Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo

Abstract

Major depressive disorder (MDD) is a common complex trait with enormous public health significance. As part of the Genetic Association Information Network initiative of the US Foundation for the National Institutes of Health, we conducted a genome-wide association study of 435 291 single nucleotide polymorphisms (SNPs) genotyped in 1738 MDD cases and 1802 controls selected to be at low liability for MDD. Of the top 200, 11 signals localized to a 167 kb region overlapping the gene piccolo (PCLO, whose protein product localizes to the cytomatrix of the presynaptic active zone and is important in monoaminergic neurotransmission in the brain) with P-values of 7.7 × 10−7 for rs2715148 and 1.2 × 10−6 for rs2522833. We undertook replication of SNPs in this region in five independent samples (6079 MDD independent cases and 5893 controls) but no SNP exceeded the replication significance threshold when all replication samples were analyzed together. However, there was heterogeneity in the replication samples, and secondary analysis of the original sample with the sample of greatest similarity yielded P=6.4 × 10−8 for the nonsynonymous SNP rs2522833 that gives rise to a serine to alanine substitution near a C2 calcium-binding domain of the PCLO protein. With the integrated replication effort, we present a specific hypothesis for further studies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, 1994.

  2. Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey. Arch Gen Psychiatry 1994; 51: 8–19.

    CAS  PubMed  Article  Google Scholar 

  3. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003; 289: 3095–3105.

    PubMed  Google Scholar 

  4. Kessler RC, Ustun TB . The World Mental Health (WMH) Survey Initiative Version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int J Methods Psychiatr Res 2004; 13: 93–121.

    PubMed  Article  Google Scholar 

  5. Weissman MM, Bland R, Joyce PR, Newman S, Wells JE, Wittchen H-U . Sex differences in rates of depression: cross-national perspectives. J Affect Disord 1993; 29: 77–84.

    CAS  PubMed  Article  Google Scholar 

  6. Piccinelli M, Wilkinson G . Outcome of depression in psychiatric settings. Br J Psychiatry 1994; 164: 297–304.

    CAS  PubMed  Article  Google Scholar 

  7. Wells KB, Stewart A, Hays RD, Burnam MA, Rogers W, Daniels M et al. The functioning and well-being of depressed patients: results from the Medical Outcomes Study. J Am Med Assoc 1989; 262: 914–919.

    CAS  Article  Google Scholar 

  8. Broadhead WE, Blazer DG, George LK, Tse CK . Depression, disability days, and days lost from work in a prospective epidemiologic survey. J Am Med Assoc 1990; 264: 2524–2528.

    CAS  Article  Google Scholar 

  9. Judd LL, Paulus MP, Wells KB, Rapaport MN . Socioeconomic burden of subsyndromal depressive symptoms and major depression in a sample of the general population. Am J Psychiatry 1996; 153: 1411–1417.

    CAS  PubMed  Article  Google Scholar 

  10. Tsuang MT, Woolson RF . Excess mortality in schizophrenia and affective disorders. Arch Gen Psychiatry 1978; 35: 1181–1185.

    CAS  PubMed  Article  Google Scholar 

  11. Berglund M, Nilsson K . Mortality in severe depression: a prospective study including 103 suicides. Acta Psychiatr Scand 1987; 76: 372–380.

    CAS  PubMed  Article  Google Scholar 

  12. Black DW, Winokur G, Nasrallah A . Is death from natural causes still excessive in psychiatric patients? J Nerv Ment Dis 1987; 175: 674–680.

    CAS  PubMed  Article  Google Scholar 

  13. Zilber N, Schufman N, Lerner Y . Mortality among psychiatric patients—the groups at risk. Acta Psychiatr Scand 1989; 79: 248–256.

    CAS  PubMed  Article  Google Scholar 

  14. Greenberg PE, Stiglin LE, Finkelstein SN, Berndt ER . The economic burden of depression in 1990. J Clin Psychiatry 1993; 54: 405–418.

    CAS  PubMed  Google Scholar 

  15. Murray CJL, Lopez AD . Evidence-based health policy: lessons from the Global Burden of Disease Study. Science 1996; 274: 740–743.

    CAS  Article  PubMed  Google Scholar 

  16. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    CAS  Article  PubMed  Google Scholar 

  17. Altshuler D, Daly M . Guilt beyond a reasonable doubt. Nat Genet 2007; 39: 813–815.

    CAS  Article  PubMed  Google Scholar 

  18. Psychiatric GWAS Consortium. A framework for interpreting genomewide association studies of psychiatric disorders. Mol Psychiatry (in press).

  19. Manolio TA, Rodriguez LL, Brooks L, Abecasis G, Ballinger D, Daly M et al. New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat Genet 2007; 39: 1045–1051.

    CAS  Article  PubMed  Google Scholar 

  20. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 2007; 39: 1181–1186.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G et al. Replicating genotype–phenotype associations. Nature 2007; 447: 655–660.

    CAS  Article  PubMed  Google Scholar 

  22. Penninx B, Beekman A, Smit J . The Netherlands Study of Depression and Anxiety (NESDA): rationales, objectives and methods. Int J Methods Psychiatr Res 2008; 17: 121–140.

    PubMed  PubMed Central  Article  Google Scholar 

  23. Boomsma DI, de Geus EJ, Vink JM, Stubbe JH, Distel MA, Hottenga JJ et al. Netherlands Twin Register: from twins to twin families. Twin Res Hum Genet 2006; 9: 849–857.

    PubMed  Article  Google Scholar 

  24. Boomsma DI, Willemsen G, Sullivan PF, Heutnik P, Meijer P, Sondervan D et al. Genome-wide association of major depression: Description of samples for the GAIN major depressive disorder study: NTR and NESDA Biobank Projects. Eur J Hum Genet 2008; 16: 335–342.

    CAS  PubMed  Article  Google Scholar 

  25. Bijl RV, van Zessen G, Ravelli A, de Rijk C, Langendoen Y . The Netherlands Mental Health Survey and Incidence Study (NEMESIS): objectives and design. Soc Psychiatry Psychiatr Epidemiol 1998; 33: 581–586.

    CAS  PubMed  Article  Google Scholar 

  26. Landman-Peeters KM, Hartman CA, van der Pompe G, den Boer JA, Minderaa RB, Ormel J . Gender differences in the relation between social support, problems in parent–offspring communication, and depression and anxiety. Soc Sci Med 2005; 60: 2549–2559.

    PubMed  Article  Google Scholar 

  27. World Health Organization. Composite International Diagnostic Interview (CIDI), Version 2.1. World Health Organization: Geneva, Switzerland, 1997.

  28. Boomsma DI, Beem AL, van den Berg M, Dolan CV, Koopmans JR, Vink JM et al. Netherlands twin family study of anxious depression (NETSAD). Twin Res 2000; 3: 323–334.

    CAS  Article  PubMed  Google Scholar 

  29. Kessler RC, Barker PR, Colpe LJ, Epstein JF, Gfroerer JC, Hiripi E et al. Screening for serious mental illness in the general population. Arch Gen Psychiatry 2003; 60: 184–189.

    PubMed  Article  Google Scholar 

  30. Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH . The Inventory of Depressive Symptomatology (IDS): psychometric properties. Psychol Med 1996; 26: 477–486.

    CAS  Article  PubMed  Google Scholar 

  31. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851–861.

    CAS  PubMed  Article  Google Scholar 

  32. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307: 1072–1079.

    CAS  PubMed  Google Scholar 

  33. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA . Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 2004; 74: 106–120.

    CAS  PubMed  Article  Google Scholar 

  34. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P . A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  CAS  Google Scholar 

  35. Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 2007; 16: 24–35.

    CAS  PubMed  Article  Google Scholar 

  36. Sullivan PF, Lin D, Tzeng JY, van den Oord EJCG, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of Stage 1. Mol Psychiatry 2008; 13: 570–584.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Hemminger BM, Saelim B, Sullivan PF . TAMAL: An integrated approach to choosing SNPs for genetic studies of human complex traits. Bioinformatics 2006; 22: 626–627.

    CAS  PubMed  Article  Google Scholar 

  38. Wittke-Thompson JK, Pluzhnikov A, Cox NJ . Rational inferences about departures from Hardy–Weinberg equilibrium. Am J Hum Genet 2005; 76: 967–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wigginton JE, Cutler DJ, Abecasis GR . A note on exact tests of Hardy–Weinberg equilibrium. Am J Hum Genet 2005; 76: 887–893.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Balding DJ . A tutorial on statistical methods for population association studies. Nat Rev Genet 2006; 7: 781–791.

    CAS  PubMed  Article  Google Scholar 

  41. Sasieni PD . From genotypes to genes: doubling the sample size. Biometrics 1997; 53: 1253–1261.

    CAS  Article  PubMed  Google Scholar 

  42. Fisher RA . Statistical Methods for Research Workers, 11th edn. Oliver and Boyd: London, 1950.

    Google Scholar 

  43. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007; 81: 559–575.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    CAS  PubMed  Google Scholar 

  45. Storey JD . The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 2003; 31: 2013–2035.

    Article  Google Scholar 

  46. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc (Ser B) 1995; 57: 289–300.

    Google Scholar 

  48. Brown BW, Russell K . Methods of correcting for multiple testing: operating characteristics. Stat Med 1997; 16: 2511–2528.

    CAS  Article  PubMed  Google Scholar 

  49. Fernando RL, Nettleton D, Southey BR, Dekkers JC, Rothschild MF, Soller M . Controlling the proportion of false positives in multiple dependent tests. Genetics 2004; 166: 611–619.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. van den Oord EJ, Sullivan PF . A framework for controlling false discovery rates and minimizing the amount of genotyping in the search for disease mutations. Hum Hered 2003; 56: 188–199.

    CAS  Article  PubMed  Google Scholar 

  51. Tsai CA, Hsueh HM, Chen JJ . Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics 2003; 59: 1071–1081.

    Article  PubMed  Google Scholar 

  52. van den Oord EJ . Controlling false discoveries in candidate gene studies. Mol Psychiatry 2005; 10: 230–231.

    CAS  Article  PubMed  Google Scholar 

  53. Sabatti C, Service S, Freimer N . False discovery rate in linkage and association genome screens for complex disorders. Genetics 2003; 164: 829–833.

    PubMed  PubMed Central  Google Scholar 

  54. Meinhausen N, Rice J . Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. Ann Stat 2006; 34: 373–393.

    Article  Google Scholar 

  55. van den Oord EJ, Sullivan PF . False discoveries and models for gene discovery. Trends Genet 2003; 19: 537–542.

    CAS  Article  PubMed  Google Scholar 

  56. Lin DY, Hu Y, Huang BE . Simple and efficient analysis of disease association with missing genotype data. Am J Hum Genet 2008; 82: 444–452.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Gauderman WJ . Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol 2002; 155: 478–484.

    PubMed  Article  Google Scholar 

  58. Gauderman WJ . Sample size requirements for matched case–control studies of gene-environment interaction. Stat Med 2002; 21: 35–50.

    PubMed  Article  Google Scholar 

  59. SAS Institute Inc.. SAS/STAT® Software: Version 9. SAS Institute Inc.: Cary, NC, 2004.

  60. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2007.

  61. Lin DY, Zeng D, Millikan R . Maximum likelihood estimation of haplotype effects and haplotype–environment interactions in association studies. Genet Epidemiol 2005; 29: 299–312.

    CAS  PubMed  Article  Google Scholar 

  62. Zeng D, Lin DY, Avery CL, North KE, Bray MS . Efficient semiparametric estimation of haplotype–disease associations in case–cohort and nested case–control studies. Biostatistics 2006; 7: 486–502.

    CAS  PubMed  Article  Google Scholar 

  63. Huang B, Amos C, Lin D . Detecting haplotype effects in genomewide association studies. Genet Epidemiol 2007; 31: 803–812.

    CAS  PubMed  Article  Google Scholar 

  64. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    CAS  PubMed  Google Scholar 

  65. SAS Institute Inc. JMP User's Guide (Version 6). SAS Institute Inc.: Cary, NC, 2005.

  66. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2006; 34 (Database issue): D173–D180.

    CAS  Article  PubMed  Google Scholar 

  67. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res 2006; 34 (Database issue): D590–D598.

    CAS  PubMed  Article  Google Scholar 

  68. Blaschke RJ, Rappold G . The pseudoautosomal regions, SHOX and disease. Curr Opin Genet Dev 2006; 16: 233–239.

    CAS  Article  PubMed  Google Scholar 

  69. Devlin B, Roeder K . Genomic control for association studies. Biometrics 1999; 55: 997–1004.

    CAS  PubMed  Article  Google Scholar 

  70. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2007; 13: 197–207.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W et al. The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 2001; 32: 63–77.

    CAS  Article  PubMed  Google Scholar 

  72. Schildkraut JJ . The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122: 509–522.

    CAS  PubMed  Article  Google Scholar 

  73. Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW . Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 1999; 147: 151–162.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C et al. Genome-wide detection and characterization of positive selection in human populations. Nature 2007; 449: 913–918.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al. Detection of large-scale variation in the human genome. Nat Genet 2004; 36: 949–951.

    CAS  PubMed  Article  Google Scholar 

  76. Pinto D, Marshall C, Feuk L, Scherer SW . Copy-number variation in control population cohorts. Hum Mol Genet 2007; 16 (Spec No. 2): R168–R173.

    CAS  PubMed  Article  Google Scholar 

  77. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007; 17: 1665–1674.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Levinson DF, Zubenko GS, Crowe RR, DePaulo RJ, Scheftner WS, Weissman MM et al. Genetics of recurrent early-onset depression (GenRED): design and preliminary clinical characteristics of a repository sample for genetic linkage studies. Am J Med Genet B Neuropsychiatr Genet 2003; 119: 118–130.

    Article  Google Scholar 

  79. Sun L, Bull S . Reduction of selection bias in genomewide genetic studies by resampling. Genet Epidemiol 2005; 28: 352–367.

    PubMed  Article  Google Scholar 

  80. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D . Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–1223.

    CAS  PubMed  Article  Google Scholar 

  81. Lopez-Leon S, Janssens AC, Gonzalez-Zuloeta Ladd AM, Del-Favero J, Claes SJ, Oostra BA et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2007; 13: 772–785.

    PubMed  Article  CAS  Google Scholar 

  82. Frayling TM . Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet 2007; 8: 657–662.

    CAS  Article  PubMed  Google Scholar 

  83. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316: 1341–1345.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316: 1331–1336.

    CAS  PubMed  Article  Google Scholar 

  85. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40: 638–645.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Sudhof TC . Neurotransmitter release. Handb Exp Pharmacol 2008; 184: 1–21.

    CAS  Article  Google Scholar 

  87. Shildkraut JJ . The catecholamine hypothesis of affective disorders: a review of the supporting evidence. Am J Psychiatry 1965; 122: 509–522.

    Article  Google Scholar 

  88. Garcia J, Gerber SH, Sugita S, Sudhof TC, Rizo J . A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 2004; 11: 45–53.

    CAS  PubMed  Article  Google Scholar 

  89. Gerber SH, Garcia J, Rizo J, Sudhof TC . An unusual C(2)-domain in the active-zone protein piccolo: implications for Ca(2+) regulation of neurotransmitter release. EMBO J 2001; 20: 1605–1619.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Nabi R, Zhong H, Serajee FJ, Huq AH . No association between single nucleotide polymorphisms in DLX6 and Piccolo genes at 7q21-q22 and autism. Am J Med Genet B Neuropsychiatr Genet 2003; 119B: 98–101.

    PubMed  Article  Google Scholar 

  91. Zollner S, Pritchard JK . Overcoming the winner's curse: estimating penetrance parameters from case–control data. Am J Hum Genet 2007; 80: 605–615.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Ghosh A, Zou F, Wright FA . Estimating odds ratios in genome scans: an approximate conditional likelihood approach. Am J Hum Genet 2008; 82: 1064–1074.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Patten SB . Selection bias in studies of major depression using clinical subjects. J Clin Epidemiol 2000; 53: 351–357.

    CAS  PubMed  Article  Google Scholar 

  94. Galbaud du Fort G, Newman SC, Bland RC . Psychiatric comorbidity and treatment seeking. Sources of selection bias in the study of clinical populations. J Nerv Ment Dis 1993; 181: 467–474.

    CAS  PubMed  Article  Google Scholar 

  95. Berkson J . Limitations of the application of fourfold table analysis to hospital data. Biometrics Bull 1946; 2: 47–53.

    CAS  Article  Google Scholar 

  96. Sullivan PF, Joyce PR . Effects of exclusion criteria in depression treatment studies. J Affect Disord 1994; 32: 21–26.

    CAS  PubMed  Article  Google Scholar 

  97. Sullivan PF, Wells JE, Joyce PR, Bushnell JA, Mulder RT, Oakley-Browne MA . Family history of depression in clinic and community samples. J Affect Disord 1996; 40: 159–168.

    CAS  PubMed  Article  Google Scholar 

  98. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ . The lifetime history of major depression in women: reliability of diagnosis and heritability. Arch Gen Psychiatry 1993; 50: 863–870.

    CAS  PubMed  Article  Google Scholar 

  99. McGuffin P, Katz R, Watkins S, Rutherford J . A hospital-based twin register of the heritability of DSM-IV unipolar depression. Arch Gen Psychiatry 1996; 53: 129–136.

    CAS  PubMed  Article  Google Scholar 

  100. Shaw CJ, Lupski JR . Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet 2004; 13 (Spec No. 1): R57–R64.

    CAS  PubMed  Article  Google Scholar 

  101. Konneker T, Barnes T, Furberg H, Losh M, Bulik CM, Sullivan PF . A searchable database of genetic evidence for psychiatric disorders. Am J Med Genet (Neuropsychiatr Genet) 2008; 147: 671–675.

    Article  Google Scholar 

  102. WTCCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–678.

    Article  CAS  Google Scholar 

  103. van den Oord EJ, Kuo PH, Hartmann AM, Webb BT, Moller HJ, Hettema JM et al. Genomewide association analysis followed by a replication study implicates a novel candidate gene for neuroticism. Arch Gen Psychiatry 2008; 65: 1062–1071.

    PubMed  Article  Google Scholar 

  104. O’Donovan M, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of novel schizophrenia loci by genome-wide association and follow-up. Nat Genet 2008, Jul 30 e-pub ahead of print.

  105. Ferreira M, O’Donovan M, Meng Y, Jones I, Ruderfer D, Jones L et al. Collaborative genome-wide association analysis of 10,596 individuals supports a role for Ankyrin-G (ANK3) and the alpha-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder. Nat Genet 2008, Aug 17 e-pub ahead of print.

  106. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525–528.

    CAS  PubMed  Article  Google Scholar 

  107. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. New Engl J Med 2008; 358: 667–675.

    CAS  PubMed  Article  Google Scholar 

  108. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from NWO: genetic basis of anxiety and depression (904-61-090); resolving cause and effect in the association between exercise and well-being (904-61-193); twin-family database for behavior genomic studies (480-04-004); twin research focusing on behavior (400-05-717), Center for Medical Systems Biology (NWO Genomics); Spinozapremie (SPI 56-464-14192); Centre for Neurogenomics and Cognitive Research (CNCR-VU); genome-wide analyses of European twin and population cohorts (EU/QLRT-2001-01254); genome scan for neuroticism (NIMH R01 MH059160); Geestkracht program of ZonMW (10-000-1002); matching funds from universities and mental health care institutes involved in NESDA (GGZ Buitenamstel-Geestgronden, Rivierduinen, University Medical Center Groningen, GGZ Lentis, GGZ Friesland, GGZ Drenthe). Genotyping was funded by the Genetic Association Information Network (GAIN) of the Foundation for the US National Institutes of Health, and analysis was supported by grants from GAIN and the NIMH (MH081802). Genotype data were obtained from dbGaP (http://www.ncbi.nlm.nih.gov/dbgap, accession number phs000020.v1.p1). Statistical analyses were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org) which is financially supported by the NWO (480-05-003). Dr Sullivan was also supported by R01s MH074027 and MH077139. Dr Schosser was supported by an Austrian Science Fund Erwin-Schrödinger-Fellowship. We express our thanks to: the GAIN Genotyping group (Dr Gonçalo Abecasis, chair) for help with quality control; Dr Gonçalo Abecasis and Dr Jun Li for assistance with MACH; Dr Shaun Purcell for PLINK; Troy Dumenil (QIMR) for expert assistance with the replication genotyping; Dr Dina Ruano (Portuguese Foundation for Science and Technology, SFRH/BPD/28725/2006); and Dr Pam Madden (DA012854) and Dr Richard Todd (AA013320) for supplying some of the phenotypes used in the Australian sample. Replication genotyping of the STAR*D samples was supported by a grant from the Bowman Family Foundation and the Sidney R Baer, Jr Foundation. We gratefully acknowledge NARSAD for funding the PCLO follow-up genotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P F Sullivan.

Additional information

Conflict of interest/disclosure (past 3 years)

Dr Baune has received honoraria for educational training of psychiatrists and general practitioners from Lundbeck, AstraZeneca and Pfizer Pharmaceuticals and travel grants from AstraZeneca, Bristol-Meyrs Squibb, Janssen and Pfizer Pharmaceuticals. Dr Fava has received: research support from Abbott Laboratories, Alkermes, Aspect Medical Systems, AstraZeneca, Bristol-Myers Squibb Company, Cephalon, Eli Lilly & Company, Forest Pharmaceuticals Inc., GlaxoSmithKline, J&J Pharmaceuticals, Lichtwer Pharma GmbH, Lorex Pharmaceuticals, Novartis, Organon Inc., PamLab, LLC, Pfizer Inc., Pharmavite, Roche, Sanofi-Aventis, Solvay Pharmaceuticals Inc., Synthelabo, Wyeth-Ayerst Laboratories; advisory/consulting fees from Abbott Laboratories, Amarin, Aspect Medical Systems, AstraZeneca, Auspex Pharmaceuticals, Bayer AG, Best Practice Project Management Inc., Biovail Pharmaceuticals Inc., BrainCells Inc., Bristol-Myers Squibb Company, Cephalon, CNS Response, Compellis, Cypress Pharmaceuticals, Dov Pharmaceuticals, Eli Lilly & Company, EPIX Pharmaceuticals, Fabre-Kramer Pharmaceuticals Inc., Forest Pharmaceuticals Inc., GlaxoSmithKline, Grunenthal GmBH, Janssen Pharmaceutica, Jazz Pharmaceuticals, J&J Pharmaceuticals, Knoll Pharmaceutical Company, Lorex Pharmaceuticals, Lundbeck, MedAvante Inc., Merck, Neuronetics, Novartis, Nutrition 21, Organon Inc., PamLab, LLC, Pfizer Inc., PharmaStar, Pharmavite, Precision Human Biolaboratory, Roche, Sanofi-Aventis, Sepracor, Solvay Pharmaceuticals Inc., Somaxon, Somerset Pharmaceuticals, Synthelabo, Takeda, Tetragenex, Transcept Pharmaceuticals, Vanda Pharmaceuticals Inc., Wyeth-Ayerst Laboratories; speaking fees from AstraZeneca, Boehringer-Ingelheim, Bristol-Myers Squibb Company, Cephalon, Eli Lilly & Company, Forest Pharmaceuticals Inc., GlaxoSmithKline, Novartis, Organon Inc., Pfizer Inc., PharmaStar, Primedia, Reed-Elsevier, Wyeth-Ayerst Laboratories; has equity holdings in Compellis, MedAvante; and has royalty/patent, other income for patent applications for SPCD and for a combination of azapirones and bupropion in MDD, copyright royalties for the MGH CPFQ, DESS and SAFER. Dr. Nolen has received: speaking fees from AstraZeneca, Eli Lilly, Pfizer, Servier, Wyeth; unrestricted research funding from AstraZeneca, Eli Lilly, GlaxoSmithKline, Wyeth; and served on advisory boards for AstraZeneca, Cyberonics, Eli Lilly, GlaxoSmithKline, Pfizer, Servier. Dr Perlis has received consulting fees or honoraria from AstraZeneca, Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline, Pfizer and Proteus; he is a stockholder in Concordant Rater Systems, LLC, and the holder of a patent related to the monitoring of raters in clinical trials. Dr Smoller has consulted to Eli Lilly, received honoraria from Hoffman-La Roche Inc., Enterprise Analysis Corp. and MPM Capital, and has served on an advisory board for Roche Diagnostics Corporation. Dr Sullivan has received unrestricted research support from Eli Lilly.

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sullivan, P., de Geus, E., Willemsen, G. et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry 14, 359–375 (2009). https://doi.org/10.1038/mp.2008.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.125

Keywords

  • major depressive disorder
  • genome-wide association
  • Netherlands study of depression and anxiety
  • Netherlands twin registry

Further reading

Search

Quick links