Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic imipramine but not bupropion increases arachidonic acid signaling in rat brain: is this related to ‘switching’ in bipolar disorder?

Abstract

Agents effective against mania in bipolar disorder are reported to decrease turnover of arachidonic acid (AA) in phospholipids and expression of calcium-dependent AA-selective cytosolic phospholipase A2 (cPLA2) in rat brain. In contrast, fluoxetine, an antidepressant that is reported to switch bipolar depressed patients to mania, increases cPLA2 expression and AA turnover in rat brain. We therefore hypothesized that antidepressants that increase switching to mania generally increase cPLA2 and AA turnover in brain. To test this hypothesis, adult male CDF-344 rats were administered imipramine and bupropion, with reported high and low switching rates, respectively, at daily doses of 10 and 30 mg kg−1 i.p., respectively, or i.p. saline (control) for 21 days. Frontal cortex expression of different PLA2 enzymes and AA turnover rates in brain when the rats were unanesthetized were measured. Compared with chronic saline, chronic imipramine but not bupropion significantly increased cortex cPLA2 mRNA activity, protein and phosphorylation, expression of the cPLA2 transcription factor, activator protein-2α (AP-2α) and AA turnover in phospholipids. Protein levels of secretory phospholipase A2, calcium-independent phospholipase A2, cyclooxygenase (COX)-1 and COX-2 were unchanged, and prostaglandin E2 was unaffected. These results, taken with prior data on chronic fluoxetine in rats, suggest that antidepressants that increase the switching tendency of bipolar depressed patients to mania do so by increasing AA recycling and metabolism in brain. Mania in bipolar disorder thus may involve upregulated brain AA metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Judd LL, Akiskal HS, Schettler PJ, Coryell W, Endicott J, Maser JD et al. A prospective investigation of the natural history of the long-term weekly symptomatic status of bipolar II disorder. Arch Gen Psychiatry 2003; 60: 261–269.

    Article  PubMed  Google Scholar 

  2. Boerlin HL, Gitlin MJ, Zoellner LA, Hammen CL . Bipolar depression and antidepressant-induced mania: a naturalistic study. J Clin Psychiatry 1998; 59: 374–379.

    Article  CAS  PubMed  Google Scholar 

  3. Settle Jr EC, Settle GP . A case of mania associated with fluoxetine. Am J Psychiatry 1984; 141: 280–281.

    Article  PubMed  Google Scholar 

  4. Rao JS, Lee HJ, Rapoport SI, Bazinet RP . Mode of action of mood stabilizers: is the arachidonic acid cascade a common target? Mol Psychiatry 2008; 13: 585–596.

    Article  CAS  PubMed  Google Scholar 

  5. Lucas KK, Dennis EA . Distinguishing phospholipase A2 types in biological samples by employing group-specific assays in the presence of inhibitors. Prostaglandins Other Lipid Mediat 2005; 77: 235–248.

    Article  CAS  PubMed  Google Scholar 

  6. Felder CC, Kanterman RY, Ma AL, Axelrod J . Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc Natl Acad Sci USA 1990; 87: 2187–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia MC, Kim HY . Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res 1997; 768: 43–48.

    Article  CAS  PubMed  Google Scholar 

  8. Qu Y, Villacreses N, Murphy DL, Rapoport SI . 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology (Berl) 2005; 180: 12–20.

    Article  CAS  Google Scholar 

  9. Stout BD, Clarke WP, Berg KA . Rapid desensitization of the serotonin (2C) receptor system: effector pathway and agonist dependence. J Pharmacol Exp Ther 2002; 302: 957–962.

    Article  CAS  PubMed  Google Scholar 

  10. Basselin M, Chang L, Bell JM, Rapoport SI . Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 2005; 30: 1064–1075.

    Article  CAS  PubMed  Google Scholar 

  11. Kol S, Ben-Shlomo I, Ando M, Payne DW, Adashi EY . Interleukin-1 beta stimulates ovarian phosphoipase A2 (PLA2) expression and activity: up-regulation of both secretory and cytosolic PLA2. Endocrinology 1997; 138: 314–321.

    Article  CAS  PubMed  Google Scholar 

  12. McHowat J, Liu S . Interleukin-1beta stimulates phospholipase A2 activity in adult rat ventricular myocytes. Am J Physiol 1997; 272 (2 Part 1): C450–C456.

    Article  CAS  PubMed  Google Scholar 

  13. Adibhatla RM, Hatcher JF . Secretory phospholipase A2 IIA is up-regulated by TNF-alpha and IL-1alpha/beta after transient focal cerebral ischemia in rat. Brain Res 2007; 1134: 199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cunnane SC, Ryan MA, Nadeau CR, Bazinet RP, Musa-Veloso K, McCloy U . Why is carbon from some polyunsaturates extensively recycled into lipid synthesis? Lipids 2003; 38: 477–484.

    Article  CAS  PubMed  Google Scholar 

  15. Funk CD . Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 1871–1875.

    Article  CAS  PubMed  Google Scholar 

  16. Lands WEM, Crawford CG . Enzymes of Membrane Phospholipid Metabolism. Plenum: New York, 1976 3–85 pp.

    Google Scholar 

  17. MacDonald JI, Sprecher H . Phospholipid fatty acid remodeling in mammalian cells. Biochim Biophys Acta 1991; 1084: 105–121.

    Article  CAS  PubMed  Google Scholar 

  18. Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI . A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 1992; 17: 187–214.

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu T, Wolfe LS . Arachidonic acid cascade and signal transduction. J Neurochem 1990; 55: 1–15.

    Article  CAS  PubMed  Google Scholar 

  20. Bazan NG . Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol 2005; 32: 89–103.

    Article  CAS  PubMed  Google Scholar 

  21. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W . The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 1996; 384: 39–43.

    Article  CAS  PubMed  Google Scholar 

  22. Hertz R, Magenheim J, Berman I, Bar-Tana J . Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha. Nature 1998; 392: 512–516.

    Article  CAS  PubMed  Google Scholar 

  23. Kuehl Jr FA, Humes JL, Tarnoff J, Cirillo VJ, Ham EA . Prostaglandin receptor site: evidence for an essential role in the action of luteinizing hormone. Science 1970; 169: 883–886.

    Article  CAS  PubMed  Google Scholar 

  24. Mulligan SJ, MacVicar BA . Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 2004; 431: 195–199.

    Article  CAS  PubMed  Google Scholar 

  25. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN . Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 1987; 237: 1171–1176.

    Article  CAS  PubMed  Google Scholar 

  26. Serhan CN, Savill J . Resolution of inflammation: the beginning programs the end. Nat Immunol 2005; 6: 1191–1197.

    Article  CAS  PubMed  Google Scholar 

  27. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ . Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 2005; 182: 180–185.

    Article  CAS  Google Scholar 

  28. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ . Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry 2006; 59: 401–407.

    Article  CAS  PubMed  Google Scholar 

  29. Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E . Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 1999; 24: 399–406.

    Article  CAS  PubMed  Google Scholar 

  30. Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI . Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 2001; 77: 796–803.

    Article  CAS  PubMed  Google Scholar 

  31. Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI . Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 1996; 220: 171–174.

    Article  CAS  PubMed  Google Scholar 

  32. Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F . Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 2004; 56: 248–254.

    Article  CAS  PubMed  Google Scholar 

  33. Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA et al. 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 1999; 10: 3887–3890.

    Article  CAS  PubMed  Google Scholar 

  34. Bazinet RP, Weis MT, Rapoport SI, Rosenberger TA . Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl-CoA by brain microsomal long-chain fatty acyl-CoA synthetases: relevance to bipolar disorder. Psychopharmacology (Berl) 2006; 184: 122–129.

    Article  CAS  Google Scholar 

  35. Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP . Chronic lamotrigine does not alter the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat: implications for the treatment of bipolar disorder. Psychopharmacology (Berl) 2007; 193: 467–474.

    Article  CAS  Google Scholar 

  36. Lee HJ, Ertley RN, Rapoport SI, Bazinet RP, Rao JS . Chronic administration of lamotrigine downregulates COX-2 mRNA and protein in rat frontal cortex. Neurochem Res 2008; 33: 861–866.

    Article  PubMed  CAS  Google Scholar 

  37. Erfurth A, Kuhn G . Topiramate monotherapy in the maintenance treatment of bipolar I disorder: effects on mood, weight and serum lipids. Neuropsychobiology 2000; 42 (Suppl 1): 50–51.

    Article  CAS  PubMed  Google Scholar 

  38. Shaldubina A, Einat H, Szechtman H, Shimon H, Belmaker RH . Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm 2002; 109: 433–440.

    Article  CAS  PubMed  Google Scholar 

  39. Ghelardoni S, Bazinet RP, Rapoport SI, Bosetti F . Topiramate does not alter expression in rat brain of enzymes of arachidonic acid metabolism. Psychopharmacology (Berl) 2005; 180: 523–529.

    Article  CAS  Google Scholar 

  40. Lee HJ, Ghelardoni S, Chang L, Bosetti F, Rapoport SI, Bazinet RP . Topiramate does not alter the kinetics of arachidonic or docosahexaenoic acid in brain phospholipids of the unanesthetized rat. Neurochem Res 2005; 30: 677–683.

    Article  CAS  PubMed  Google Scholar 

  41. Kushner SF, Khan A, Lane R, Olson WH . Topiramate monotherapy in the management of acute mania: results of four double-blind placebo-controlled trials. Bipolar Disord 2006; 8: 15–27.

    Article  CAS  PubMed  Google Scholar 

  42. Ghaemi SN, Hsu DJ, Soldani F, Goodwin FK . Antidepressants in bipolar disorder: the case for caution. Bipolar Disord 2003; 5: 421–433.

    Article  CAS  PubMed  Google Scholar 

  43. Post RM, Altshuler LL, Leverich GS, Frye MA, Nolen WA, Kupka RW et al. Mood switch in bipolar depression: comparison of adjunctive venlafaxine, bupropion and sertraline. Br J Psychiatry 2006; 189: 124–131.

    Article  CAS  PubMed  Google Scholar 

  44. Lee HJ, Rao JS, Ertley RN, Chang L, Rapoport SI, Bazinet RP . Chronic fluoxetine increases cytosolic phospholipase A(2) activity and arachidonic acid turnover in brain phospholipids of the unanesthetized rat. Psychopharmacology (Berl) 2007; 190: 103–115.

    Article  CAS  Google Scholar 

  45. Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP . Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 2006; 6: 413–420.

    Article  CAS  PubMed  Google Scholar 

  46. Tohen M, Vieta E, Calabrese J, Ketter TA, Sachs G, Bowden C et al. Efficacy of olanzapine and olanzapine-fluoxetine combination in the treatment of bipolar I depression. Arch Gen Psychiatry 2003; 60: 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  47. Leverich GS, Altshuler LL, Frye MA, Suppes T, McElroy SL, Keck Jr PE et al. Risk of switch in mood polarity to hypomania or mania in patients with bipolar depression during acute and continuation trials of venlafaxine, sertraline, and bupropion as adjuncts to mood stabilizers. Am J Psychiatry 2006; 163: 232–239.

    Article  PubMed  Google Scholar 

  48. Daniel W, Adamus A, Melzacka M, Szymura J, Vetulani J . Cerebral pharmacokinetics of imipramine in rats after single and multiple dosages. Naunyn Schmiedebergs Arch Pharmacol 1981; 317: 209–213.

    Article  CAS  PubMed  Google Scholar 

  49. Maj J, Melzacka M, Mogilnicka E, Daniel W . Different pharmacokinetic and pharmacological effects following acute and chronic treatment with imipramine. J Neural Transm 1982; 54: 219–228.

    Article  CAS  PubMed  Google Scholar 

  50. Nestler EJ, McMahon A, Sabban EL, Tallman JF, Duman RS . Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci USA 1990; 87: 7522–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rogoz Z, Skuza G, Wojcikowski J, Daniel WA . Effects of combined treatment with imipramine and metyrapone in the forced swimming test in rats. Behavioral and pharmacokinetic studies. Pol J Pharmacol 2003; 55: 993–999.

    CAS  PubMed  Google Scholar 

  52. Fava M, Rush AJ, Thase ME, Clayton A, Stahl SM, Pradko JF et al. 15 years of clinical experience with bupropion HCl: from bupropion to bupropion SR to bupropion XL. Prim Care Companion J Clin Psychiatry 2005; 7: 106–113.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kitamura Y, Fujitani Y, Kitagawa K, Miyazaki T, Sagara H, Kawasaki H et al. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA. Biol Pharm Bull 2008; 31: 246–249.

    Article  CAS  PubMed  Google Scholar 

  54. Torregrossa MM, Folk JE, Rice KC, Watson SJ, Woods JH . Chronic administration of the delta opioid receptor agonist (+)BW373U86 and antidepressants on behavior in the forced swim test and BDNF mRNA expression in rats. Psychopharmacology (Berl) 2005; 183: 31–40.

    Article  CAS  Google Scholar 

  55. Torregrossa MM, Isgor C, Folk JE, Rice KC, Watson SJ, Woods JH . The delta-opioid receptor agonist (+)BW373U86 regulates BDNF mRNA expression in rats. Neuropsychopharmacology 2004; 29: 649–659.

    Article  CAS  PubMed  Google Scholar 

  56. Jiao X, Pare WP, Tejani-Butt SM . Antidepressant drug induced alterations in binding to central dopamine transporter sites in the Wistar Kyoto rat strain. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 30–41.

    Article  CAS  PubMed  Google Scholar 

  57. Calabrese JR, Rapport DJ, Kimmel SE, Shelton MD . Controlled trials in bipolar I depression: focus on switch rates and efficacy. Eur Neuropsychopharmacol 1999; 9 (Suppl 4): S109–S112.

    Article  CAS  PubMed  Google Scholar 

  58. Prien RF, Caffey Jr EM, Klett CJ . Prophylactic efficacy of lithium carbonate in manic-depressive illness. Report of the Veterans Administration and National Institute of Mental Health collaborative study group. Arch Gen Psychiatry 1973; 28: 337–341.

    Article  CAS  PubMed  Google Scholar 

  59. Prien RF, Kupfer DJ, Mansky PA, Small JG, Tuason VB, Voss CB et al. Drug therapy in the prevention of recurrences in unipolar and bipolar affective disorders. Report of the NIMH Collaborative Study Group comparing lithium carbonate, imipramine, and a lithium carbonate-imipramine combination. Arch Gen Psychiatry 1984; 41: 1096–1104.

    Article  CAS  PubMed  Google Scholar 

  60. Suckow RF, Smith TM, Perumal AS, Cooper TB . Pharmacokinetics of bupropion and metabolites in plasma and brain of rats, mice, and guinea pigs. Drug Metab Dispos 1986; 14: 692–697.

    CAS  PubMed  Google Scholar 

  61. DeGeorge JJ, Noronha JG, Bell J, Robinson P, Rapoport SI . Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J Neurosci Res 1989; 24: 413–423.

    Article  CAS  PubMed  Google Scholar 

  62. Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP . Chronic N-methyl-D-aspartate administration increases the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat. J Lipid Res 2008; 49: 162–168.

    Article  CAS  PubMed  Google Scholar 

  63. Washizaki K, Smith QR, Rapoport SI, Purdon AD . Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified arachidonate in the anesthetized rat. J Neurochem 1994; 63: 727–736.

    Article  CAS  PubMed  Google Scholar 

  64. Bazinet RP, Lee HJ, Felder CC, Porter AC, Rapoport SI, Rosenberger TA . Rapid high-energy microwave fixation is required to determine the anandamide (N-arachidonoylethanolamine) concentration of rat brain. Neurochem Res 2005; 30: 597–601.

    Article  CAS  PubMed  Google Scholar 

  65. Deutsch J, Rapoport SI, Purdon AD . Relation between free fatty acid and acyl-CoA concentrations in rat brain following decapitation. Neurochem Res 1997; 22: 759–765.

    Article  CAS  PubMed  Google Scholar 

  66. Folch J, Lees M, Sloane Stanley GH . A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226: 497–509.

    CAS  PubMed  Google Scholar 

  67. Skipski VP, Good JJ, Barclay M, Reggio RB . Quantitative analysis of simple lipid classes by thin-layer chromatography. Biochim Biophys Acta 1968; 152: 10–19.

    Article  CAS  PubMed  Google Scholar 

  68. Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA . Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 1994; 60: 189–194.

    Article  CAS  PubMed  Google Scholar 

  69. Aveldano MI, VanRollins M, Horrocks LA . Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography. J Lipid Res 1983; 24: 83–93.

    CAS  PubMed  Google Scholar 

  70. Deutsch J, Grange E, Rapoport SI, Purdon AD . Isolation and quantitation of long-chain acyl-coenzyme A esters in brain tissue by solid-phase extraction. Anal Biochem 1994; 220: 321–323.

    Article  CAS  PubMed  Google Scholar 

  71. DeMar Jr JC, Lee HJ, Ma K, Chang L, Bell JM, Rapoport SI et al. Brain elongation of linoleic acid is a negligible source of the arachidonate in brain phospholipids of adult rats. Biochim Biophys Acta 2006; 1761: 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  72. Grange E, Deutsch J, Smith QR, Chang M, Rapoport SI, Purdon AD . Specific activity of brain palmitoyl-CoA pool provides rates of incorporation of palmitate in brain phospholipids in awake rats. J Neurochem 1995; 65: 2290–2298.

    Article  CAS  PubMed  Google Scholar 

  73. Radin NS . Extraction of tissue lipids with a solvent of low toxicity. Methods Enzymol 1981; 72: 5–7.

    Article  CAS  PubMed  Google Scholar 

  74. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  75. Rao JS, Bazinet RP, Rapoport SI, Lee HJ . Chronic administration of carbamazepine down-regulates AP-2 DNA-binding activity and AP-2alpha protein expression in rat frontal cortex. Biol Psychiatry 2007; 61: 154–161.

    Article  CAS  PubMed  Google Scholar 

  76. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T . Structure of the human cyclo-oxygenase-2 gene. Biochem J 1994; 302 (Part 3): 723–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morri H, Ozaki M, Watanabe Y . 5′-flanking region surrounding a human cytosolic phospholipase A2 gene. Biochem Biophys Res Commun 1994; 205: 6–11.

    Article  CAS  PubMed  Google Scholar 

  78. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell 1991; 65: 1043–1051.

    Article  CAS  PubMed  Google Scholar 

  79. Rao JS, Ertley RN, Rapoport SI, Bazinet RP, Lee HJ . Chronic NMDA administration to rats up-regulates frontal cortex cytosolic phospholipase A2 and its transcription factor, activator protein-2. J Neurochem 2007; 102: 1918–1927.

    Article  CAS  PubMed  Google Scholar 

  80. Borsch-Haubold AG, Bartoli F, Asselin J, Dudler T, Kramer RM, Apitz-Castro R et al. Identification of the phosphorylation sites of cytosolic phospholipase A2 in agonist-stimulated human platelets and HeLa cells. J Biol Chem 1998; 273: 4449–4458.

    Article  CAS  PubMed  Google Scholar 

  81. Hefner Y, Borsch-Haubold AG, Murakami M, Wilde JI, Pasquet S, Schieltz D et al. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem 2000; 275: 37542–37551.

    Article  CAS  PubMed  Google Scholar 

  82. Peng CH, Chiou SH, Chen SJ, Chou YC, Ku HH, Cheng CK et al. Neuroprotection by Imipramine against lipopolysaccharide-induced apoptosis in hippocampus-derived neural stem cells mediated by activation of BDNF and the MAPK pathway. Eur Neuropsychopharmacol 2008; 18: 128–140.

    Article  CAS  PubMed  Google Scholar 

  83. Bosetti F, Rintala J, Seemann R, Rosenberger TA, Contreras MA, Rapoport SI et al. Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 2002; 7: 845–850.

    Article  CAS  PubMed  Google Scholar 

  84. Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI . Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 2003; 85: 690–696.

    Article  CAS  PubMed  Google Scholar 

  85. Goodwin GM . Evidence-based guidelines for treating bipolar disorder: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2003; 17: 149–173; discussion 147.

    Article  CAS  PubMed  Google Scholar 

  86. Nemeroff CB, Evans DL, Gyulai L, Sachs GS, Bowden CL, Gergel IP et al. Double-blind, placebo-controlled comparison of imipramine and paroxetine in the treatment of bipolar depression. Am J Psychiatry 2001; 158: 906–912.

    Article  CAS  PubMed  Google Scholar 

  87. Richelson E . Synaptic effects of antidepressants. J Clin Psychopharmacol 1996; 16 (3 Suppl 2): 1S–7S; discussion 7S–9S.

    Article  CAS  PubMed  Google Scholar 

  88. Rao JS, Ertley RN, DeMar Jr JC, Rapoport SI, Bazinet RP, Lee HJ . Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol Psychiatry 2007; 12: 151–157.

    Article  CAS  PubMed  Google Scholar 

  89. Rao JS, Ertley RN, Lee HJ, DeMar Jr JC, Arnold JT, Rapoport SI et al. n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 2007; 12: 36–46.

    Article  CAS  PubMed  Google Scholar 

  90. Rao JS, Kim H-W, Rapoport SI . Up-Regulated Arachidonic Acid Cascade Enzymes and their Transcription Factors in Post-Mortem Frontal Cortex from Bipolar Disorder Patients. Abstr. Soc Neurosci 37: 707.5, San Diego, CA, USA, 2007.

    Google Scholar 

Download references

Acknowledgements

This work was entirely supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-W Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HJ., Rao, J., Chang, L. et al. Chronic imipramine but not bupropion increases arachidonic acid signaling in rat brain: is this related to ‘switching’ in bipolar disorder?. Mol Psychiatry 15, 602–614 (2010). https://doi.org/10.1038/mp.2008.117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.117

Keywords

This article is cited by

Search

Quick links