Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NB: AS OF JANUARY 1, 2023 THIS JOURNAL IS PUBLISHED WITH ELSEVIER: https://www.sciencedirect.com/journal/mucosal-immunology

  • Article
  • Published:

Autoimmunity, inflammatory bowel disease, and cancer

Transient receptor potential melastatin 8 ion channel in macrophages modulates colitis through a balance-shift in TNF-alpha and interleukin-10 production

Abstract

The transient receptor potential (TRP) ion channel family is well characterized in sensory neurons; however, little is known about its role in the immune system. Here we show that the cold-sensing TRPM8 has an unexpected role in innate immunity. TRPM8 expression and function in macrophages were demonstrated in vitro using molecular techniques and calcium imaging. In addition, adoptive macrophage transfer and systemic interleukin (IL)-10 overexpression were performed in experimental colitis. TRPM8 activation induced calcium-transients in murine peritoneal macrophages (PM) and bone marrow-derived macrophages of wild-type (WT) but not TRPM8-deficient mice. TRPM8-deficient PM exhibited defective phagocytosis and increased motility compared with those in WT, whereas the opposite effects of TRPM8 activation were induced in WT PM. TRPM8 activation or blockage/genetic deletion induced a anti- or pro-inflammatory macrophage cytokine profile, respectively. WT mice treated with repeated menthol (TRPM8 agonist) enemas were consistently protected from experimental colitis, whereas TRPM8-deficient mice showed increased colitis susceptibility. Adoptive transfer of TRPM8-deficient macrophages aggravated colitis, whereas systemic IL-10 overexpression rescued this phenotype. TRPM8 activation in peptidergic sensory neurons did not affect neuropeptide release from the inflamed colon. TRPM8 in macrophages determines pro- or anti-inflammatory actions by regulating tumor necrosis factor-α and interleukin-10 production. These findings suggest novel TRPM8-based options for immunomodulatory intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Shouval, D.S. et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40, 706–719 (2014).

    Article  CAS  Google Scholar 

  2. Nilius, B. & Owsianik, G. The transient receptor potential family of ion channels. Genome. Biol. 12, 218 (2011).

    Article  CAS  Google Scholar 

  3. de Jong, P.R. et al. TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal Immunol. 8, 491–504 (2015).

    Article  CAS  Google Scholar 

  4. D'Aldebert, E., Cenac, N. & Rousset, P. Transient receptor potential vanilloid 4 activated inflammatory signals by intestinal epithelial cells and colitis in mice. Gastroenterology 140, 275–285 (2011).

    Article  CAS  Google Scholar 

  5. Ramachandran, R. et al. TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc. Natl. Acad. Sci. USA 110, 7476–7481 (2013).

    Article  CAS  Google Scholar 

  6. Engel, M.A. et al. TRPA1 and substance P mediate colitis in mice. Gastroenterology 141, 1346–1358 (2011).

    Article  CAS  Google Scholar 

  7. Caceres, A.I. et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl. Acad. Sci. USA 106, 9099–9104 (2009).

    Article  CAS  Google Scholar 

  8. Woolf, C.J. & Ma, Q. Nociceptors—noxious stimulus detectors. Neuron 55, 353–364 (2007).

    Article  CAS  Google Scholar 

  9. Tano, J.Y. et al. Impairment of survival signaling and efferocytosis in TRPC3-deficient macrophages. Biochem. Biophys. Res. Commun. 410, 643–647 (2011).

    Article  CAS  Google Scholar 

  10. Finney-Hayward, T.K. et al. Expression of transient receptor potential C6 channels in human lung macrophages. Am. J. Respir. Cell Mol. Biol. 43, 296–304 (2010).

    Article  CAS  Google Scholar 

  11. Link, T.M. et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat. Immunol. 11, 232–239 (2010).

    Article  CAS  Google Scholar 

  12. Hamanaka, K. et al. TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 299, 353–362 (2010).

    Article  Google Scholar 

  13. Tsavaler, L. et al. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  14. McKemy, D.D., Neuhausser, W.M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  Google Scholar 

  15. Peier, A.M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  Google Scholar 

  16. Zhao, C. et al. 1,8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. Inflammation 37, 566–572 (2014).

    Article  CAS  Google Scholar 

  17. Juergens, U.R. et al. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm. Pharmacol. Ther. 17, 281–287 (2004).

    Article  CAS  Google Scholar 

  18. Wu, S.N., Wu, P.Y. & Tsai, M.L. Characterization of TRPM8-like channels activated by the cooling agent icilin in the macrophage cell line RAW 264.7. J. Membr. Biol. 241, 11–20 (2011).

    Article  CAS  Google Scholar 

  19. Santos, F.A. et al. 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem. Toxicol. 42, 579–584 (2004).

    Article  CAS  Google Scholar 

  20. Yang, Y. et al. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2014, 352371 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Gabryšová, L. et al. The regulation of IL-10 expression. Curr. Top. Microbiol. Immunol. 380, 157–190 (2014).

    PubMed  Google Scholar 

  22. Wirtz, S. et al. Chemically induced mouse models of intestinal inflammation. Nat Protoc 2, 541–546 (2007).

    Article  CAS  Google Scholar 

  23. Yamamoto, S. et al. TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med. 14, 738–747 (2008).

    Article  CAS  Google Scholar 

  24. Knowles, H. et al. Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 108, 11578–11583 (2011).

    Article  CAS  Google Scholar 

  25. Rozza, A.L. et al. The gastroprotective effect of menthol: involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS One 9, e86686 (2014).

    Article  Google Scholar 

  26. Mazelin, L. et al. Vagally dependent protective action of calcitonin gene-related peptide on colitis. Peptides 20, 1367–1374 (1999).

    Article  CAS  Google Scholar 

  27. Reinshagen, M. et al. Calcitonin gene-related peptide mediates the protective effect of sensory nerves in a model of colonic injury. J. Pharmacol. Exp. Ther. 286, 657–661 (1998).

    CAS  PubMed  Google Scholar 

  28. Abe, K. et al. Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells. Proc. Natl. Acad. Sci. USA 104, 17022–17027 (2007).

    Article  CAS  Google Scholar 

  29. Mueller-Tribbensee, S.M. et al. Differential contribution of TRPA1, TRPV4 and TRPM8 to colonic nociception in mice. PLoS One 10, e0128242 (2015).

    Article  Google Scholar 

  30. Franke, A. et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 40, 1319–1323 (2008).

    Article  CAS  Google Scholar 

  31. Doecke, J.D. et al. Genetic susceptibility in IBD: overlap between ulcerative colitis and Crohn's disease. Inflamm. Bowel. Dis. 19, 240–245 (2013).

    Article  Google Scholar 

  32. Mantovani, A. & Marchesi, F. IL-10 and macrophages orchestrate gut homeostasis. Immunity 40, 637–639 (2014).

    Article  CAS  Google Scholar 

  33. Zigmond, E. et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40, 720–733 (2014).

    Article  CAS  Google Scholar 

  34. Watanabe, N. et al. Elimination of local macrophages in intestine prevents chronic colitis in interleukin-10-deficient mice. Dig. Dis. Sci. 48, 408–414 (2003).

    Article  Google Scholar 

  35. Tomoyose, M. et al. Role of interleukin-10 in a murine model of dextran sulfate sodium-induced colitis. Scand. J. Gastroenterol. 33, 435–440 (1998).

    Article  CAS  Google Scholar 

  36. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181 (2010).

    Article  CAS  Google Scholar 

  37. Kelly, E.K., Wang, L. & Ivashkiv, L.B. Calcium-activated pathways and oxidative burst mediate zymosan-induced signaling and IL-10 production in human macrophages. J. Immunol. 184, 5545–5552 (2010).

    Article  CAS  Google Scholar 

  38. Vinuela-Fernandez, I. et al. The TRPM8 channel forms a complex with the 5-HT1B receptor and phospholipase D that amplifies its reversal of pain hypersensitivity. Neuropharmacology 79, 136–151 (2013).

    Article  Google Scholar 

  39. Ostacolo, C. et al. Isoxazole derivatives as potent transient receptor potential melastatin type 8 (TRPM8) agonists. Eur. J. Med. Chem. 69, 659–669 (2013).

    Article  CAS  Google Scholar 

  40. Rohács, T. et al. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 8, 626–634 (2005).

    Article  Google Scholar 

  41. Daniels, R.L., Takashima, Y. & McKemy, D.D. Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J. Biol. Chem. 284, 1570–1582 (2009).

    Article  CAS  Google Scholar 

  42. Rahimi, R. & Abdollahi, M. Herbal medicines for the management of irritable bowel syndrome: a comprehensive review. World J. Gastroenterol. 18, 589–600 (2012).

    Article  Google Scholar 

  43. Foersch, S., Kiesslich, R. & Waldner, M.J. Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut 59, 1046–1055 (2010).

    Article  Google Scholar 

  44. Becker, C., Fantini, M.C. & Neurath, M.F. High resolution colonoscopy in live mice. Nat. Protoc. 1, 2900–2904 (2006).

    Article  CAS  Google Scholar 

  45. Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    Article  CAS  Google Scholar 

  46. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    Article  CAS  Google Scholar 

  47. Liu, X.L., Clark, K.R. & Johnson, P.R. Production of recombinant adeno-associated virus vectors using a packaging cell line and a hybrid recombinant adenovirus. Gene. Ther. 6, 293–299 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Izydorczyk, A. Kuhn, J. Schramm, B. Vogler, and S. Haux-Oertel for technical assistance (Institute of Physiology and Pathophysiology). The present work was performed in fulfillment of the requirements for obtaining the degree ‘Dr rer. nat.’ for M. Khalil. M.A.E. received support from the Deutsche Forschungsgemeinschaft (DFG EN 1060/2-1), Marohn-Stiftung, ELAN, IZKF, and Universitätsbund of the Friedrich-Alexander-Universität Erlangen-Nürnberg. P.W.R. was supported by the Federal Ministry of Edu. & Res. (BMBF0315449C).

Author contribution

MK: acquisition of data; analysis and interpretation of data; writing of the manuscript. AB, RL, SF: acquisition of data; analysis and interpretation of data. PWR, SW, CB, MFN: study concept and design; critical revision of the manuscript for important intellectual content. MAE: study concept and design; acquisition of data; analysis and interpretation of data; critical revision of the manuscript for important intellectual content; writing of the manuscript; statistical analysis; obtained funding; study supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Engel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

SUPPLEMENTARY MATERIAL is linked to the online version of the paper

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, M., Babes, A., Lakra, R. et al. Transient receptor potential melastatin 8 ion channel in macrophages modulates colitis through a balance-shift in TNF-alpha and interleukin-10 production. Mucosal Immunol 9, 1500–1513 (2016). https://doi.org/10.1038/mi.2016.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mi.2016.16

This article is cited by

Search

Quick links