Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Interleukin-15 deficiency promotes the development of T-cell acute lymphoblastic leukemia in non-obese diabetes mice with severe combined immunodeficiency

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Fehniger TA, Caligiuri MA . Interleukin 15: biology and relevance to human disease. Blood 2001; 97: 14–32.

    Article  CAS  Google Scholar 

  2. Steel JC, Waldmann TA, Morris JC . Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 2012; 33: 35–41.

    Article  CAS  Google Scholar 

  3. Fehniger TA, Suzuki K, Ponnappan A, VanDeusen JB, Cooper MA, Florea SM et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med 2001; 193: 219–231.

    Article  CAS  Google Scholar 

  4. Sato N, Sabzevari H, Fu S, Ju W, Petrus MN, Bamford RN et al. Development of an IL-15-autocrine CD8 T-cell leukemia in IL-15-transgenic mice requires the cis expression of IL-15Ralpha. Blood 2011; 117: 4032–4040.

    Article  CAS  Google Scholar 

  5. Bobbala D, Chen XL, Leblanc C, Mayhue M, Stankova J, Tanaka T et al. Interleukin-15 plays an essential role in the pathogenesis of autoimmune diabetes in the NOD mouse. Diabetologia 2012; 55: 3010–3020.

    Article  CAS  Google Scholar 

  6. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103: 18261–18266.

    Article  CAS  Google Scholar 

  7. Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 2006; 26: 8022–8031.

    Article  CAS  Google Scholar 

  8. Delgado MD, Leon J . Myc roles in hematopoiesis and leukemia. Genes Cancer 2010; 1: 605–616.

    Article  CAS  Google Scholar 

  9. Prochazka M, Gaskins HR, Shultz LD, Leiter EH . The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA 1992; 89: 3290–3294.

    Article  CAS  Google Scholar 

  10. Chiu PP, Ivakine E, Mortin-Toth S, Danska JS . Susceptibility to lymphoid neoplasia in immunodeficient strains of nonobese diabetic mice. Cancer Res 2002; 62: 5828–5834.

    CAS  PubMed  Google Scholar 

  11. Han X, Bueso-Ramos CE . Precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias. Am J Clin Pathol 2007; 127: 528–544.

    Article  CAS  Google Scholar 

  12. Benedict CL, Gilfillan S, Thai TH, Kearney JF . Terminal deoxynucleotidyl transferase and repertoire development. Immunol Rev 2000; 175: 150–157.

    Article  CAS  Google Scholar 

  13. Cook GJ, Pardee TS . Animal models of leukemia: any closer to the real thing? Cancer Metastasis Rev 2013; 32: 63–76.

    Article  Google Scholar 

  14. Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H et al. Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci USA 2014; 111: 1915–1920.

    Article  CAS  Google Scholar 

  15. Barrett AJ, Battiwalla M . Relapse after allogeneic stem cell transplantation. Expert Rev Hematol 2010; 3: 429–441.

    Article  Google Scholar 

  16. Alpdogan O, Eng JM, Muriglan SJ, Willis LM, Hubbard VM, Tjoe KH et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood 2005; 105: 865–873.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSERC Discovery grants to SI and SR. We thank Dr Josée Lamoureux for technical assistance. DB is a recipient of a postdoctoral fellowship from Fonds de Recherché du Québec-Santé (FRQS). CR-CHUS is an FRQS-funded research center.

Author contributions

DB, JY, SR and SI designed the experiments, analyzed and interpreted data, and wrote the manuscript. DB, EB and XLC performed the experiments. RK and MM assisted in performing the experiments. HK and FB participated in data analysis and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Ramanathan or S Ilangumaran.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobbala, D., Kandhi, R., Chen, X. et al. Interleukin-15 deficiency promotes the development of T-cell acute lymphoblastic leukemia in non-obese diabetes mice with severe combined immunodeficiency. Leukemia 30, 1749–1752 (2016). https://doi.org/10.1038/leu.2016.28

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.28

Search

Quick links