Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features

A Corrigendum to this article was published on 02 November 2016

Abstract

We evaluated the frequency, genetic architecture, clinico-pathologic features and prognostic impact of RUNX1 mutations in 2439 adult patients with newly-diagnosed acute myeloid leukemia (AML). RUNX1 mutations were found in 245 of 2439 (10%) patients; were almost mutually exclusive of AML with recurrent genetic abnormalities; and they co-occurred with a complex pattern of gene mutations, frequently involving mutations in epigenetic modifiers (ASXL1, IDH2, KMT2A, EZH2), components of the spliceosome complex (SRSF2, SF3B1) and STAG2, PHF6, BCOR. RUNX1 mutations were associated with older age (16–59 years: 8.5%; 60 years: 15.1%), male gender, more immature morphology and secondary AML evolving from myelodysplastic syndrome. In univariable analyses, RUNX1 mutations were associated with inferior event-free (EFS, P<0.0001), relapse-free (RFS, P=0.0007) and overall survival (OS, P<0.0001) in all patients, remaining significant when age was considered. In multivariable analysis, RUNX1 mutations predicted for inferior EFS (P=0.01). The effect of co-mutation varied by partner gene, where patients with the secondary genotypes RUNX1mut/ASXL1mut (OS, P=0.004), RUNX1mut/SRSF2mut (OS, P=0.007) and RUNX1mut/PHF6mut (OS, P=0.03) did significantly worse, whereas patients with the genotype RUNX1mut/IDH2mut (OS, P=0.04) had a better outcome. In conclusion, RUNX1-mutated AML is associated with a complex mutation cluster and is correlated with distinct clinico-pathologic features and inferior prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Döhner H, Weisdorf DJ, Bloomfield CD . Acute myeloid leukemia. N Engl J Med 2015; 373: 1136–1152.

    Article  PubMed  Google Scholar 

  2. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  3. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France, 2008.

    Google Scholar 

  4. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit et al. The 2008 revision of the WHO Classification of Myeloid Neoplasms and Acute Leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  PubMed  Google Scholar 

  5. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  6. Döhner H, Gaidzik VI . Impact of genetic features on treatment decisions in AML. Hematology Am Soc Hematol Educ Program 2011; 2011: 36–42.

    Article  PubMed  Google Scholar 

  7. Meyer SC, Levine RL . Translational implications of somatic genomics in acute myeloid leukaemia. Lancet Oncol 2014; 15: e382–e394.

    Article  CAS  PubMed  Google Scholar 

  8. Ossenkoppele G, Löwenberg B . How I treat the older patient with acute myeloid leukemia. Blood 2015; 125: 767–774.

    Article  CAS  PubMed  Google Scholar 

  9. Okuda T, van Deuersen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    Article  CAS  PubMed  Google Scholar 

  10. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004; 10: 299–304.

    Article  CAS  PubMed  Google Scholar 

  11. Mangan JK, Speck NA . RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit Rev Oncog 2011; 16: 77–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sakurai M, Kunimoto H, Watanabe N, Fukuchi Y, Yuasa S, Yamazaki S et al. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia 2014; 28: 2344–2354.

    Article  CAS  PubMed  Google Scholar 

  13. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–1824.

    CAS  PubMed  Google Scholar 

  14. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, Maki K et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood 2000; 96: 3154–3160.

    CAS  PubMed  Google Scholar 

  15. Preudhomme C, Warot-Loze D, Roumier C, Grardel-Duflos N, Garand R, Lai JL et al. High incidence of biallelic point mutations in the Runt domain of the AML1/PEBP2 alpha B gene in M0 acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 2000; 96: 2862–2869.

    CAS  PubMed  Google Scholar 

  16. Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC et al. RUNX1 gene mutation in primary myelodysplastic syndrome—the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol 2007; 139: 405–414.

    Article  CAS  PubMed  Google Scholar 

  17. Dicker F, Haferlach C, Kern W, Haferlach T, Schnittger S . Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. Blood 2007; 110: 1308–1316.

    Article  CAS  PubMed  Google Scholar 

  18. Gelsi-Boyer V, Trouplin V, Adélaïde J, Aceto N, Remy V, Pinson S et al. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer 2008; 8: 299.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009; 114: 5352–5361.

    Article  CAS  PubMed  Google Scholar 

  20. Dicker F, Haferlach C, Sundermann J, Wendland N, Weiss T, Kern W et al. Mutation analysis for RUNX1, KMT2A-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 2010; 24: 1528–1532.

    Article  CAS  PubMed  Google Scholar 

  21. Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Röck J, Paschka P et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 2011; 29: 1364–1372.

    Article  PubMed  Google Scholar 

  22. Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 2011; 117: 2348–2357.

    Article  CAS  PubMed  Google Scholar 

  23. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011; 364: 2496–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KH et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol 2012; 30: 3109–3118.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Greif PA, Konstandin NP, Metzeler KH, Herold T, Pasalic Z, Ksienzyk B et al. RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with a poor prognosis and up-regulation of lymphoid genes. Haematologica 2012; 97: 1909–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013; 122: 3616–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014; 28: 241–247.

    Article  CAS  PubMed  Google Scholar 

  28. Grossmann V, Kern W, Harbich S, Alpermann T, Jeromin S, Schnittger S et al. Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematologica 2011; 96: 1874–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steensma DP, Gibbons RJ, Mesa RA, Tefferi A, Higgs DR . Somatic point mutations in RUNX1/CBFA2/AML1 are common in high-risk myelodysplastic syndrome, but not in myelofibrosis with myeloid metaplasia. Eur J Haematol 2005; 74: 47–53.

    Article  CAS  PubMed  Google Scholar 

  30. Harada H, Harada Y, Tanaka H, Kimura A, Inaba T . Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003; 101: 673–680.

    Article  CAS  PubMed  Google Scholar 

  31. Christiansen DH, Andersen MK, Pedersen-Bjergaard J . Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 2004; 104: 1474–1481.

    Article  CAS  PubMed  Google Scholar 

  32. Quentin S, Cuccuini W, Ceccaldi R, Nibourel O, Pondarre C, Pagès MP et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 2011; 117: e161–e170.

    Article  CAS  PubMed  Google Scholar 

  33. Skokowa J, Steinemann D, Katsman-Kuipers JE, Zeidler C, Klimenkova O, Klimiankou M et al. Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 2014; 123: 2229–2237.

    Article  CAS  PubMed  Google Scholar 

  34. Jongmans MC, Kuiper RP, Carmichael CL, Wilkins EJ, Dors N, Carmagnac et al. Novel RUNX1 mutations in familial platelet disorder with enhanced risk for acute myeloid leukemia: clues for improved identification of the FPD/AML syndrome. Leukemia 2010; 24: 242–246.

    Article  CAS  PubMed  Google Scholar 

  35. Owen C . Insights into familial platelet disorder with propensity to myeloid malignancy (FPD/AML). Leuk Res 2010; 34: 141–142.

    Article  PubMed  Google Scholar 

  36. Preudhomme C, Renneville A, Bourdon V, Philippe N, Roche-Lestienne C, Boissel N et al. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood 2009; 113: 5583–5587.

    Article  CAS  PubMed  Google Scholar 

  37. Nickels EM, Soddalter J, Churpek JE, Godley LA . Recognizing familial myeloid leukemia in adults. Ther Adv Hematol 2013; 4: 254–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schlenk RF, Döhner K, Mack S, Stoppel M, Király F, Götze K et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German-Austrian trial AMLHD98A. J Clin Oncol 2010; 28: 4642–4648.

    Article  PubMed  Google Scholar 

  39. Schlenk RF, Döhner K, Krauter J, Gaidzik V, Paschka P, Heuser M et al. All-trans retinoic acid improves outcome in younger adult patients with nucleophosmin-1 mutated acute myeloid leukemia – results of the AMLSG 07-04 randomized treatment trial [abstract]. Haematologica 2014; 99, abstract 646.

  40. Schlenk RF, Fröhling S, Hartmann F, Fischer JT, Glasmacher A, del Valle F et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 2004; 18: 1798–1803.

    Article  CAS  PubMed  Google Scholar 

  41. Tassara M, Döhner K, Brossart P, Held G, Götze K, Horst HA et al. Valproic acid in combination with all-trans retinoic acid and intensive therapy for acute myeloid leukemia in older patients. Blood 2014; 123: 4027–4036.

    Article  CAS  PubMed  Google Scholar 

  42. Schlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  43. Gaidzik VI, Schlenk RF, Paschka P, Stölzle A, Späth D, Kuendgen et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood 2013; 121: 4769–4777.

    Article  CAS  PubMed  Google Scholar 

  44. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 2010; 28: 3636–3643.

    Article  CAS  PubMed  Google Scholar 

  45. Paschka P, Schlenk RF, Gaidzik VI, Herzig JK, Aulitzky T, Bullinger L et al. ASXL1 mutations are associated with distinct clinical and genetic features and confer poor prognosis in younger adult patients with acute myeloid leukemia: A study of the German-Austrian AML Study Group. Haematologica 2015; 100: 324–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Korn EL . Censoring distributions as a measure of follow-up in survival analysis. Stat Med 1986; 5: 255–260.

    Article  CAS  PubMed  Google Scholar 

  47. Kaplan E, Meier P . Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  48. Therneau TM, Grambusch PM . Modeling Survival Data: Extending the Cox Model. Springer Verlag: New York, NY, USA, 2000.

    Book  Google Scholar 

  49. Cox DR . Regression models and life tables (with discussion). J R Stat Soc B 1972; 34: 187–220.

    Google Scholar 

  50. Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT et al. The prevention and treatment of missing data in clinical trials. N Engl J Med 2012; 367: 1355–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harrell FE . Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer Verlag: New York, NY, USA, 2001.

    Book  Google Scholar 

  52. R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2009.

  53. Chvatal V . A greedy heuristic for the set-covering problem. Math Oper Res 1979; 4: 233–235.

    Article  Google Scholar 

  54. Juliusson G, Lazarevic V, Hörstedt AS, Hagberg O, Höglund M . Swedish Acute Leukemia Registry Group. Acute myeloid leukemia in the real world: why population-based registries are needed. Blood 2012; 119: 3890–3899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood 2014; 124: 1790–1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported in part by grants 01GI9981 and 01KG0605 from the German Bundesministerium für Bildung und Forschung (BMBF), grant 109675 from the Deutsche Krebshilfe and the Sonderforschungsbereich (SFB) 1074 funded by the Deutsche Forschungsgemeinschaft (SFB 1074, projects B3 and B4). VG is a grant recipient of the Medical Faculty of Ulm University; LB and MH are Heisenberg Professors of the Deutsche Forschungsgemeinschaft (DFG, BU 1339/3-8 and HE 5240-6-1). HAK is in part supported by Deutsche Forschungsgemeinschaft (SFB 1074, project Z1), German Bundesministerium für Bildung und Forschung (BMBF; Gerontosys II, Forschungskern SyStaR, project ID 0315894); European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 602783. AMLSG treatment trials were in part supported by Pfizer and Amgen. We are grateful to all members of the German-Austrian AML Study Group (AMLSG) for their participation in this study and providing patient samples; a list of participating institutions and investigators appears in the Supplementary information.

Author contributions

VIG, VT, RFS, KD and HD designed the research; VIG, VT, EP, PP, JH, TW and BK performed experiments; VIG, VT, EP, PP, JH, BS, TW, BK and KD analyzed results; DW, MG, JMK, HAK and RFS performed statistical analyses; CHK, HAH, PB, GH, AK, M Ringhoffer, KG, M Rummel, FT, MH, AG, LB, RFS, KD and HD accrued patients and provided material; VIG, VT, EP, RFS, KD and HD wrote the paper.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to H Döhner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidzik, V., Teleanu, V., Papaemmanuil, E. et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 30, 2160–2168 (2016). https://doi.org/10.1038/leu.2016.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.126

This article is cited by

Search

Quick links