Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Targeting IL-17A in multiple myeloma: a potential novel therapeutic approach in myeloma

Abstract

We have previously demonstrated that interleukin-17A (IL-17) producing T helper 17 cells are significantly elevated in blood and bone marrow (BM) in multiple myeloma (MM) and IL-17A promotes MM cell growth via the expression of IL-17 receptor. In this study, we evaluated anti-human IL-17A human monoclonal antibody (mAb), AIN457 in MM. We observe significant inhibition of MM cell growth by AIN457 both in the presence and the absence of BM stromal cells (BMSCs). Although IL-17A induces IL-6 production, AIN457 significantly downregulated IL-6 production and MM cell adhesion in MM–BMSC co-culture. AIN457 also significantly inhibited osteoclast cell differentiation. More importantly, in the SCIDhu model of human myeloma administration of AIN457 weekly for 4 weeks after the first detection of tumor in mice led to a significant inhibition of tumor growth and reduced bone damage compared with isotype control mice. To understand the mechanism of action of anti-IL-17A mAb, we report, here, that MM cells express IL-17A. We also observed that IL-17A knockdown inhibited MM cell growth and their ability to induce IL-6 production in co-cultures with BMSC. These pre-clinical observations suggest efficacy of AIN457 in myeloma and provide the rationale for its clinical evaluation for anti-myeloma effects and for improvement of bone disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding MM pathogenesis in the BM to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  2. Munshi NC . Immunoregulatory mechanisms in multiple myeloma. Hematol Oncol Clin North Am 1997; 11: 51–69.

    Article  CAS  PubMed  Google Scholar 

  3. Prabhala RH, Neri P, Bae JE, Tassone P, Shammas MA, Allam CK et al. Dysfunctional T regulatory cells in multiple myeloma. Blood 2006; 107: 301–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 2010; 115: 5385–5392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prabhala RH, Munshi NC . Immune therapies. Hematol Oncol Clin North Am 2007; 21: 1217–1230.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL . Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348–2357.

    CAS  PubMed  Google Scholar 

  7. Fehérvari Z, Sakaguchi S . CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209–1217.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126: 375–387.

    Article  CAS  PubMed  Google Scholar 

  9. Peck A, Mellins E . Precarious balance: Th17 cells in host defense. Infect Immun 2010; 78: 32–38.

    Article  CAS  PubMed  Google Scholar 

  10. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 2010; 32: 681–691.

    Article  CAS  PubMed  Google Scholar 

  11. Glocker EO, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U et al. A homozygous CARD9 mutation in a family with susceptibility tofungal infections. N Engl J Med 2009; 361: 1727–1735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaffen SL . Recent advances in the IL-17 cytokine family. Curr Opinion Immunol 2011; 23: 613–619.

    Article  CAS  Google Scholar 

  13. Steinman L . A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 2007; 13: 139–145.

    Article  CAS  PubMed  Google Scholar 

  14. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235–238.

    CAS  PubMed  Google Scholar 

  15. Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y . IL-17 production from activated T cells is required for the spontaneous development of destructivearthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci USA 2003; 100: 5986–5990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103: 1345–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dhodapkar KM, Barbuto S, Matthews P, Kukreja A, Mazumder A, Vesole D et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood 2008; 112: 2878–2885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alexandrakis MG, Pappa CA, Miyakis S, Sfiridaki A, Kafousi M, Alegakis A et al. Serum IL-17 and its relationship to angiogenic factors in MM. Eur J Intern Med 2006; 17: 412–416.

    Article  CAS  PubMed  Google Scholar 

  19. Song XN, Yang JZ, Sun LX, Meng JB, Zhang JQ, Lv HY et al. Expression levels of IL-27 and IL-17 in multiple myeloma patients: a higher ratio of IL-27:IL-17 in bone marrow was associated with a superior progression-free survival. Leuk Res 2013; 37: 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  20. Shen CJ, Yuan ZH, Liu YX, Hu GY . Increased numbers of T helper 17 cells and the correlation with clinicopathological characteristics in multiple myeloma. J Int Med Res 2012; 40: 556–564.

    Article  CAS  PubMed  Google Scholar 

  21. Lemancewicz D, Bolkun L, Jablonska E, Czeczuga-Semeniuk E, Kostur A, Kloczko J et al. The role of Interleukin-17A and Interleukin-17E in multiple myeloma patients. Med Sci Monit 2012; 18: BR54–BR59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scudla V, Petrova P, Minarik J, Pika T, Bacovsky J . Analysis of the serum levels of selected biological parameters in monoclonal gammopathy of undetermined significance and different stages of multiple myeloma. Neoplasma 2011; 58: 499–506.

    Article  CAS  PubMed  Google Scholar 

  23. Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I . A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood 2010; 116: 3554–3563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tucci M, Stucci S, Savonarola A, Ciavarella S, Cafforio P, Dammacco F et al. Immature dendritic cells in multiple myeloma are prone to osteoclast-like differentiation through interleukin-17A stimulation. Br J Haematol 2013; 161: 821–831.

    Article  CAS  PubMed  Google Scholar 

  25. Oteri G, Allegra A, Bellomo G, Alonci A, Nastro E, Penna G et al. Reduced serum levels of IL-17 in patients with osteonecrosis of the jaw and in MM subjects after bisphosphonates administration. Cytokine 2008; 43: 103–104.

    Article  CAS  PubMed  Google Scholar 

  26. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF . Generation and regulation of human CD4+IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA 2008; 105: 15505–15510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kottke T, Sanchez-Perez L, Diaz RM, Thompson J, Chong H, Harrington K et al. Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res 2007; 67: 11970–11979.

    Article  CAS  PubMed  Google Scholar 

  28. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K et al. IL-23 promotes tumor incidence and growth. Nature 2006; 442: 461–465.

    Article  CAS  PubMed  Google Scholar 

  29. Tai YT, Podar K, Catley L, Tseng YH, Akiyama M, Shringarpure R et al. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3-kinase/AKT signaling. Cancer Res 2003; 63: 5850–5858.

    CAS  PubMed  Google Scholar 

  30. Vallet S, Raje N, Ishitsuka K, Hideshima T, Podar K, Chhetri S et al. MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood 2007; 110: 3744–3752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neri P, Tassone P, Shammas M, Yasui H, Schipani E, Batchu RB et al. Biological pathways and in vivo anti-tumor activity induced by Atiprimod in myeloma. Leukemia 2007; 21: 2519–2526.

    Article  CAS  PubMed  Google Scholar 

  32. Tassone P, Neri P, Carrasco DR, Burger R, Goldmacher VS, Fram R et al. A clinically relevant SCID-hu in vivo model of human multiple myeloma. Blood 2005; 106: 713–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruegsegger P, Koller B, Muller R . A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 1996; 58: 24–29.

    Article  CAS  PubMed  Google Scholar 

  34. Iwakura Y, Ishigame H, Saijo S, Nakae S . Functional specialization of IL-17 family members. Immunity 2011; 34: 149–162.

    Article  CAS  PubMed  Google Scholar 

  35. Wang YH, Wills-Karp M . The potential role of interleukin-17 in severe asthma. Curr Allergy Asthma Rep 2011; 11: 388–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li J, Lau GK, Chen L, Dong SS, Lan HY, Huang XR et al. Interleukin 17A promotes hepato-cellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression. PLoS One 2011; 6: e21816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chabaud M, Fossiez F, Taupin JL, Miossec P . Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 1998; 161: 409–414.

    CAS  PubMed  Google Scholar 

  38. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C et al. T cell interleukin-17 induces stromal cells to produce pro-inflammatory and hematopoieticcytokines. J Exp Med 1996; 183: P2593–P2603.

    Article  Google Scholar 

  39. Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P . Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 2000; 12: 1092–1099.

    Article  CAS  PubMed  Google Scholar 

  40. Xu C, Yu L, Zhan P, Zhang Y . Elevated pleural effusion IL-17 is a diagnostic marker and outcome predictor in lung cancer patients. Eur J Med Res 2014; 19: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin Y, Xu J, Su H, Zhong W, Yuan Y, Yu Z et al. Interleukin-17 is a favorable prognostic marker for colorectal cancer. Clin Transl Oncol 2014; 17: 50–56.

    Article  Google Scholar 

  42. Han Y, Ye A, Bi L, Wu J, Yu K, Zhang S . Th17 cells and IL-17 increase with poor prognosis in patients with acute myeloid leukemia. Cancer Sci 2014; 105: 933–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 2005; 175: 6177–6189.

    Article  CAS  PubMed  Google Scholar 

  44. Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A, Claret E et al. Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res 1999; 59: 3698–3704.

    CAS  PubMed  Google Scholar 

  45. Zhang Q, Liu S, Ge D, Zhang Q, Xue Y, Xiong Z et al. Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res 2012; 72: 2589–2599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou L, Peng S, Duan J, Zhou J, Wang L, Wang J . A human B cell line AF10 expressing HIL-17. Biochem Mol Biol Int 1998; 45: 1113–1119.

    CAS  PubMed  Google Scholar 

  47. Shen N, Wang J, Zhao M, Pei F, He B . Anti-interleukin-17 antibodies attenuate airway inflammation in tobacco-smoke-exposed mice. Inhal Toxicol 2011; 23: 212–218.

    Article  CAS  PubMed  Google Scholar 

  48. van den Berg WB, Miossec P . IL-17 as a future therapeutic target for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5: 549–553.

    Article  CAS  PubMed  Google Scholar 

  49. Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004; 50: 650–659.

    Article  CAS  PubMed  Google Scholar 

  50. Gensicke H, Leppert D, Yaldizli O, Lindberg RL, Mehling M, Kappos L et al. Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs 2012; 26: 11–37.

    Article  CAS  PubMed  Google Scholar 

  51. Kurzeja M, Rudnicka L, Olszewska M . New interleukin-23 pathway inhibitors in dermatology: ustekinumab, briakinumab, and secukinumab. Am J Clin Dermatol 2011; 12: 113–125.

    Article  PubMed  Google Scholar 

  52. Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 2007; 9: R96.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulatorof osteoclastogenesis. J Clin Invest 1999; 103: 1345–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2010; 2: 52ra72.

    Article  PubMed  Google Scholar 

  55. Genovese MC, Van den Bosch F, Roberson SA, Bojin S, Biagini IM, Ryan P et al. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I randomized, double-blind, placebo-controlled, proof-of-concept study. J Arthritis Rheum 2010; 62: 929–939.

    Article  CAS  Google Scholar 

  56. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, Braun D et al. Anti–interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med 2012; 366: 1190–1199.

    Article  CAS  PubMed  Google Scholar 

  57. Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G et al. Brodalumab, an anti–interleukin-17–receptor antibody for psoriasis. N Engl J Med 2012; 366: 1181–1189.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by: Department of Veterans Affairs Merit Review Award1 I01 BX001584-01, NIH grants RO1-124929 and PO1-155258 (NCM) and P50-100707, and PO1-78378, (NCM and KCA). JSG is supported by the Department of Veterans Affairs Office of Research and Development through a Career Development Award-2. This work is also supported by MMRF senior award to RHP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R H Prabhala or N C Munshi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhala, R., Fulciniti, M., Pelluru, D. et al. Targeting IL-17A in multiple myeloma: a potential novel therapeutic approach in myeloma. Leukemia 30, 379–389 (2016). https://doi.org/10.1038/leu.2015.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.228

Search

Quick links