Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Detection of MYD88 L265P in peripheral blood of patients with Waldenström’s Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance

Abstract

MYD88 L265P is highly prevalent in Waldenstrom’s Macroglobulinemia (WM) and IgM monoclonal gammopathy of unknown significance (MGUS). We investigated whether MYD88 L265P could be identified by peripheral blood (PB) allele-specific PCR. MYD88 L265P was detected in untreated WM (114/118; 96.6%); previously treated WM (63/102; 61.8%); and IgM MGUS (5/12; 41.7%) but in none of 3 hyper-IgM or 40 healthy individuals. Median PB MYD88 L265P ΔCt was 3.77, 7.24, 10.89, 12.33 and 14.07 for untreated WM, previously treated WM, IgM MGUS, hyper-IgM and healthy individuals, respectively (P<0.0001). For the 232 IgM MGUS and WM patients, PB MYD88 L265P ΔCt moderately correlated to bone marrow (BM) disease (r=−0.3553; P<0.0001), serum IgM (r=−0.3262; P<0.0001) and hemoglobin (r=0.3005; P<0.0001) levels. PB MYD88 L265P ΔCt and serum IgM correlated similarly with BM disease burden. For positive patients, PB MYD88 L265P ΔCt was <6.5 in 100/114 (88%) untreated WM, and >6.5 in 4/5 (80%) IgM MGUS patients (P=0.0034). Attainment of a negative PB MYD88 L265P mutation status was associated with lower BM disease (P=0.001), serum IgM (P=0.019) and higher hemoglobin (P=0.004) levels in treated patients. These studies show the feasibility for detecting MYD88 L265P by PB examination, and the potential for PB MYD88 L265P ΔCt use in the diagnosis and management of WM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML et al. Clinicopathological definition of Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. Semin Oncol 2003; 30: 110–115.

    Article  Google Scholar 

  2. Swerdlow S, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. (eds). World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. IARC Press: Lyon, France, 2008.

    Google Scholar 

  3. Treon SP . How I treat Waldenström macroglobulinemia. Blood 2009 17 114: 2375–2385.

    Article  CAS  Google Scholar 

  4. Smith BR, Robert NJ, Ault KA . In Waldenstrom's macroglobulinemia the quantity of detectable circulating monoclonal B lymphocytes correlates with clinical course. Blood 1983; 61: 911–914.

    CAS  PubMed  Google Scholar 

  5. Kriangkum J, Taylor BJ, Treon SP, Mant MJ, Belch AR, Pilarski LM . Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood. Blood 2004; 104: 2134–2142.

    Article  CAS  Google Scholar 

  6. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 3470: 115–119.

    Article  Google Scholar 

  7. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med 2012; 367: 826–833.

    Article  CAS  Google Scholar 

  8. Treon SP, Hunter ZR . MYD88 L265P Somatic Mutation in IgM MGUS. N Engl J Med 2012; 367: 2256–2257.

    Article  CAS  Google Scholar 

  9. Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X et al. MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013; 121: 2051–2058.

    Article  CAS  Google Scholar 

  10. Landgren O, Staudt L . MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med 2012; 367: 2255–2256.

    Article  CAS  Google Scholar 

  11. Gachard N, Parrens M, Soubeyran I, Petit B, Marfak A, Rizzo D et al. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenstrom macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia 2013; 27: 183–189.

    Article  CAS  Google Scholar 

  12. Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Pascutto C et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom's macroglobulinemia and related lymphoid neoplasms. Blood 2013; 121: 2522–2528.

    Article  CAS  Google Scholar 

  13. Jimenez C, Sebastian E, Del Carmen Chillon M, Giraldo P, Mariano Hernández J, Escalante F et al. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom's macroglobulinemia. Leukemia 2013; 27: 1722–1728.

    Article  CAS  Google Scholar 

  14. Poulain S, Roumier C, Decambron A, Renneville A, Herbaux C, Bertrand E et al. MYD88 L265P mutation in Waldenstrom’s macroglobulinemia. Blood 2013; 121: 4504–4511.

    Article  CAS  Google Scholar 

  15. Willenbacher W, Willenbacher E, Brunner A, Manzi C . Improved accuracy of discrimination between IgM multiple myeloma and Waldenstrom macroglobulinaemia by testing for MYD88 L265P mutations. Br J Haematol 2013; 161: 902–904.

    Article  CAS  Google Scholar 

  16. Ondrejka SL, Lin JJ, Warden DW, Durkin L, Cook JR, Hsi ED . MYD88 L265P somatic mutation: its usefulness in the differential diagnosis of bone marrow involvement by B-cell lymphoproliferative disorders. Am J Clin Pathol 2013; 140: 387–394.

    Article  CAS  Google Scholar 

  17. Argentou N, Vassilopoulos G, Ioannou M, Germenis AE, Speletas M . Rapid detection of MYD88-L265P mutation by PCR-RFLP in B-cell lymphoproliferative disorders. Leukemia 2014; 28: 447–449.

    Article  CAS  Google Scholar 

  18. Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  Google Scholar 

  19. Watters T, Kenny EF, O’Neill LAJ . Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 2007; 85: 411–419.

    Article  CAS  Google Scholar 

  20. Loiarro M, Gallo G, Fantò N, De Santis R, Carminati P, Ruggiero V et al. Identification of critical residues of the MYD88 death domain involved in the recruitment of downstream kinases. J Biol Chem 2009; 284: 28093–281023.

    Article  CAS  Google Scholar 

  21. Lin SC, Lo YC, Wu H . Helical assembly in the MYD88-IRAK4-IRAK2 complex in TLR/IL-1R signaling. Nature 2010; 465: 885–891.

    Article  CAS  Google Scholar 

  22. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood 2013; 122: 1222–1232.

    Article  CAS  Google Scholar 

  23. Treon SP, Tripsas C, Yang G, Cao Y, Xu L, Hunter ZR et al2013 A Prospective Multicenter Study of the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib In Patients With Relapsed or Refractory Waldenstrom’s Macroglobulinemia. Blood 2013; 122, Abstract 251.

  24. Kyle RA, Treon SP, Alexanian R, Barlogie B, Björkholm M, Dhodapkar M et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the second international workshop on Waldenstrom’s macroglobulinemia. Semin Oncol 2003; 30: 116–120.

    Article  Google Scholar 

  25. Kiss TL, Xu WM, Jamal N, Messner HA . Comparative testing of peripheral blood and bone marrow for BCR-ABL transcripts in patients post allogeneic bone marrow transplantation and during interferon treatment for chronic myeloid leukemia. Leuk Lymphoma 1999; 34: 493–500.

    Article  CAS  Google Scholar 

  26. Passamonti F . How I treat polycythemia vera. Blood 2012; 120: 275–284.

    Article  CAS  Google Scholar 

  27. Tiacci E, Schiavoni G, Forconi F, Santi A, Trentin L, Ambrosetti A et al. Simple genetic diagnosis of hairy cell leukemia by sensitive detection of the BRAF-V600E mutation. Blood 2012; 119: 192–195.

    Article  CAS  Google Scholar 

  28. Ngo HT, Leleu X, Lee J, Jia X, Melhem M, Runnels J et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 2008; 112: 150–158.

    Article  CAS  Google Scholar 

  29. Hodge LS, Ziesmer SC, Yang ZZ, Secreto FJ, Gertz MA, Novak AJ et al. IL-21 in the bone marrow microenvironment contributes to IgM secretion and proliferation of malignant cells in Waldenstrom macroglobulinemia. Blood 2012; 120: 3774–3782.

    Article  CAS  Google Scholar 

  30. Treon SP, Hunter ZR, Matous J, Joyce RM, Mannion B, Advani R et al. Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom’s macroglobulinemia: results of WMCTG Trial 03-248. Clin Cancer Res 2007; 13: 3320–3325.

    Article  CAS  Google Scholar 

  31. Treon SP, Tripsas CK, Meid K, Patterson CJ, Heffner LT, Eradat H et al. Prospective, multicenter study of the MTOR inhibitor everolimus (RAD001) as primary therapy in Waldenstrom’s macroglobulinemia. Blood 2013; 122, Abstract 1822.

  32. Anderson KC, Alsina M, Bensinger W, Biermann JS, Cohen AD, Devine S et al. Multiple Myeloma, version 1.2013. J Natl Compr Canc Netw 2013; 11: 11–17.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the generous support of the Peter and Helen Bing Foundation, the Coyote Fund for WM, the International Waldenstrom’s Macroglobulinemia Foundation, the Waldenstrom’s Cancer Fund, the Bailey Family Fund for WM, the D’Amato Family Fund for Genomic Discovery, the Edward and Linda Nelson Fund for WM Research, the Bauman Family Trust, the Tannenhauser Family Foundation and the WM patients who provided their samples in support of these studies.

Author contributions

LX and SPT conceived and designed the experiments, and wrote the manuscript. LX, ZRH and SPT performed the data analysis. LX, YC, XL and JC procured and/or prepared samples, and LX designed and performed PCR-based sequencing studies. LX, GY, YC and XL performed validation studies. SPT, CJP, SK and CT provided patient care, obtained consent and samples. RJM collected patient data. NL and MK provided input for development and validation of AS–PCR assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P Treon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Hunter, Z., Yang, G. et al. Detection of MYD88 L265P in peripheral blood of patients with Waldenström’s Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia 28, 1698–1704 (2014). https://doi.org/10.1038/leu.2014.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.65

This article is cited by

Search

Quick links