Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status

Abstract

To study clonal evolution in chronic myeloid leukemia (CML), we searched for BCR-ABL-independent gene mutations in both Philadelphia chromosome (Ph)-negative and Ph-positive clones in 29 chronic-phase CML patients by targeted deep sequencing of 25 genes frequently mutated in myeloid disorders. Ph-negative clones were analyzed in 14 patients who developed clonal cytogenetic abnormalities in Ph-negative cells during treatment with tyrosine kinase inhibitors (TKI). Mutations were detected in 6/14 patients (43%) affecting the genes DNMT3A, EZH2, RUNX1, TET2, TP53, U2AF1 and ZRSR2. In two patients, the mutations were also found in corresponding Ph-positive diagnostic samples. To further investigate Ph-positive clones, 15 randomly selected CML patients at diagnosis were analyzed. Somatic mutations additional to BCR-ABL were found in 5/15 patients (33%) affecting ASXL1, DNMT3A, RUNX1 and TET2. Analysis of individual hematopoietic colonies at diagnosis revealed that most mutations were part of the Ph-positive clone. In contrast, deep sequencing of subsequent samples during TKI treatment revealed one DNMT3A mutation in Ph-negative cells that was also present in Ph-positive cells at diagnosis, implying that the mutation preceded the BCR-ABL rearrangement. In summary, BCR-ABL-independent gene mutations were frequently found in Ph-negative and Ph-positive clones of CML patients and may be considered as important cofactors in the clonal evolution of CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hehlmann R, Hochhaus A, Baccarani M . Chronic myeloid leukaemia. Lancet 2007; 370: 342–350.

    Article  CAS  Google Scholar 

  2. Bumm T, Müller C, Al-Ali HK, Krohn K, Shepherd P, Schmidt E et al. Emergence of clonal cytogenetic abnormalities in Ph- cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 2003; 101: 1941–1949.

    Article  CAS  Google Scholar 

  3. Loriaux M, Deininger M . Clonal cytogenetic abnormalities in Philadelphia chromosome negative cells in chronic myeloid leukemia patients treated with imatinib. Leuk Lymphoma 2004; 45: 2197–2203.

    Article  CAS  Google Scholar 

  4. Fayad L, Kantarjian H, O'Brien S, Seong D, Albitar M, Keating M et al. Emergence of new clonal abnormalities following interferon-alpha induced complete cytogenetic response in patients with chronic myeloid leukemia: report of three cases. Leukemia 1997; 11: 767–771.

    Article  CAS  Google Scholar 

  5. Fabarius A, Giehl M, Rebacz B, Krämer A, Frank O, Haferlach C et al. Centrosome aberrations and G1 phase arrest after in vitro and in vivo treatment with the SRC/ABL inhibitor dasatinib. Haematologica 2008; 93: 1145–1154.

    Article  CAS  Google Scholar 

  6. Deininger MW, Cortes J, Paquette R, Park B, Hochhaus A, Baccarani M et al. The prognosis for patients with chronic myeloid leukemia who have clonal cytogenetic abnormalities in Philadelphia chromosome-negative cells. Cancer 2007; 110: 1509–1519.

    Article  Google Scholar 

  7. Jabbour E, Kantarjian HM, Abruzzo LV, O'Brien S, Garcia-Manero G, Verstovsek S et al. Chromosomal abnormalities in Philadelphia chromosome negative metaphases appearing during imatinib mesylate therapy in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Blood 2007; 110: 2991–2995.

    Article  CAS  Google Scholar 

  8. Lee SE, Choi SY, Bang JH, Kim SH, Jang EJ, Byeun JY et al. The long-term clinical implications of clonal chromosomal abnormalities in newly diagnosed chronic phase chronic myeloid leukemia patients treated with imatinib mesylate. Cancer Genet 2012; 205: 563–571.

    Article  CAS  Google Scholar 

  9. Kovitz C, Kantarjian H, Garcia-Manero G, Abruzzo LV, Cortes J . Myelodysplastic syndromes and acute leukemia developing after imatinib mesylate therapy for chronic myeloid leukemia. Blood 2006; 108: 2811–2813.

    Article  CAS  Google Scholar 

  10. Georgiou G, Efthymiou A, Vardounioti I, Boutsikas G, Angelopoulou MK, Vassilakopoulos TP et al. Development of acute myeloid leukemia with NPM1 mutation, in Ph-negative clone, during treatment of CML with imatinib. Leukemia 2012; 26: 824–826.

    Article  CAS  Google Scholar 

  11. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 2013; 122: 872–884.

    Article  CAS  Google Scholar 

  12. Fialkow PJ, Martin PJ, Najfeld V, Penfold GK, Jacobson RJ, Hansen JA . Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood 1981; 58: 158–163.

    CAS  PubMed  Google Scholar 

  13. Raskind WH, Ferraris AM, Najfeld V, Jacobson RJ, Moohr JW, Fialkow PJ . Further evidence for the existence of a clonal Ph-negative stage in some cases of Ph-positive chronic myelocytic leukemia. Leukemia 1993; 7: 1163–1167.

    CAS  PubMed  Google Scholar 

  14. Cross NC, Daley GQ, Green AR, Hughes TP, Jamieson C, Manley P et al. BCR-ABL1-positive CML and BCR-ABL1-negative chronic myeloproliferative disorders: some common and contrasting features. Leukemia 2008; 22: 1975–1989.

    Article  CAS  Google Scholar 

  15. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  Google Scholar 

  16. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090–1098.

    Article  CAS  Google Scholar 

  17. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012; 4: 149ra118.

    Article  Google Scholar 

  18. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 328–333.

    Article  CAS  Google Scholar 

  19. Corces-Zimmerman MR, Majeti R . Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis. Leukemia 2014; 28: 2276–2282.

    Article  CAS  Google Scholar 

  20. Mahon FX, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.

    Article  CAS  Google Scholar 

  21. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 2013; 122: 515–522.

    Article  CAS  Google Scholar 

  22. Ernst T, Erben P, Müller MC, Paschka P, Schenk T, Hoffmann J et al. Dynamics of BCR-ABL mutated clones prior to hematologic or cytogenetic resistance to imatinib. Haematologica 2008; 93: 186–192.

    Article  CAS  Google Scholar 

  23. Rinke J, Schäfer V, Schmidt M, Ziermann J, Kohlmann A, Hochhaus A et al. Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA. Clin Chem 2013; 59: 1238–1250.

    Article  CAS  Google Scholar 

  24. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP . Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 2012; 7: e46688.

    Article  CAS  Google Scholar 

  25. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  Google Scholar 

  26. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 2002; 16: 53–59.

    Article  CAS  Google Scholar 

  27. Cross NC, Feng L, Bungey J, Goldman JM . Minimal residual disease after bone marrow transplant for chronic myeloid leukaemia detected by the polymerase chain reaction. Leuk Lymphoma 1993; 11: 39–43.

    Article  Google Scholar 

  28. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999; 13: 1825–1832.

    Article  CAS  Google Scholar 

  29. Müller MC, Erben P, Saglio G, Gottardi E, Nyvold CG, Schenk T et al. Harmonization of BCR-ABL mRNA quantification using a uniform multifunctional control plasmid in 37 international laboratories. Leukemia 2008; 22: 96–102.

    Article  Google Scholar 

  30. Branford S, Fletcher L, Cross NC, Müller MC, Hochhaus A, Kim D-W et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trails. Blood 2008; 112: 3330–3338.

    Article  CAS  Google Scholar 

  31. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011; 364: 2496–2506.

    Article  CAS  Google Scholar 

  32. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  Google Scholar 

  33. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    Article  CAS  Google Scholar 

  34. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R . Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA 2014; 111: 2548–2553.

    Article  CAS  Google Scholar 

  35. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011; 20: 11–24.

    Article  CAS  Google Scholar 

  36. Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011; 20: 25–38.

    Article  CAS  Google Scholar 

  37. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011; 44: 23–31.

    Article  Google Scholar 

  38. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44: 1179–1181.

    Article  CAS  Google Scholar 

  39. Ernst T, Chase A, Zoi K, Waghorn K, Hidalgo-Curtis C, Score J et al. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Haematologica 2010; 95: 1473–1480.

    Article  CAS  Google Scholar 

  40. Corm S, Biggio V, Roche-Lestienne C, Laï JL, Yakoub-Agha I, Philippe N et al. Coexistence of AML1/RUNX1 and BCR-ABL point mutations in an imatinib-resistant form of CML. Leukemia 2005; 19: 1991–1992.

    Article  CAS  Google Scholar 

  41. Boultwood J, Perry J, Zaman R, Fernandez-Santamaria C, Littlewood T, Kusec R et al. High-density single nucleotide polymorphism array analysis and ASXL1 gene mutation screening in chronic myeloid leukemia during disease progression. Leukemia 2010; 24: 1139–1145.

    Article  CAS  Google Scholar 

  42. Grossmann V, Kohlmann A, Zenger M, Schindela S, Eder C, Weissmann S et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia 2011; 25: 557–560.

    Article  CAS  Google Scholar 

  43. Makishima H, Jankowska AM, McDevitt MA, O'Keefe C, Dujardin S, Cazzolli H et al. CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood 2011; 117: e198–e206.

    Article  CAS  Google Scholar 

  44. Soverini S, Score J, Iacobucci I, Poerio A, Lonetti A, Gnani A et al. IDH2 somatic mutations in chronic myeloid leukemia patients in blast crisis. Leukemia 2011; 25: 178–181.

    Article  CAS  Google Scholar 

  45. Deininger M . Recent advances in understanding chronic myeloid leukemia biology. Hematol Edu 2013; 7: 139–146.

    Google Scholar 

  46. Cross NC, White HE, Müller MC, Saglio G, Hochhaus A . Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 2012; 26: 2172–2175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Mrs Anja Waldau is gratefully acknowledged. The study was funded by the Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/24) and the Interdisziplinäres Zentrum für Klinische Forschung (IZKF, Jena, Germany). This work was supported by Roche Diagnostics (Mannheim, Germany) as a subproject within the Interlaboratory Robustness of Next-Generation Sequencing (IRON)-II study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ernst.

Ethics declarations

Competing interests

SS, TH and CH are part owners of the MLL Munich Leukemia Laboratory. AK is employed by the MLL Munich Leukemia Laboratory and has received honoraria from Roche. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, M., Rinke, J., Schäfer, V. et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 28, 2292–2299 (2014). https://doi.org/10.1038/leu.2014.272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.272

This article is cited by

Search

Quick links