Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on Epigenetics in Hematologic Malignancies

Epigenetics of myelodysplastic syndromes

Abstract

Myelodysplastic syndromes (MDS) are clonal diseases of the elderly characterized by chronic cytopenias, dysplasia and a variable risk of progression to acute myeloid leukemia (AML). Aberrant methylation of tumor-suppressor gene promoters has been established for many years and recently tracked to the most immature cells of MDS, suggesting that these alterations are drivers of MDS pathogenesis. In recent years, recurrent somatic mutations in genes encoding proteins involved in DNA methylation and demethylation and in covalent histone modifications have been reported in myeloid malignancies, including MDS. Whole-genome epigenetic profiles of MDS are also emerging. In parallel with these advances in the molecular pathogenesis of MDS, clinical trials have established hypomethylating agents (HMAs) as the mainstay of therapy in the advanced forms of the disease. In this review, we summarize the current understanding of the molecular machinery involved in epigenetic regulation, discuss how epigenetic alterations arise in MDS and contribute to its pathogenesis and then discuss the mode of action of HMAs in MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998; 91: 2985–2990.

    CAS  PubMed  Google Scholar 

  2. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009; 114: 3448–3458.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O'Keefe C et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009; 113: 1315–1325.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wei Y, Chen R, Dimicoli S, Bueso-Ramos C, Neuberg D, Pierce S et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia 2013; 27: 2177–2186.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. del Rey M, O'Hagan K, Dellett M, Aibar S, Colyer HA, Alonso ME et al. Genome-wide profiling of methylation identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes. Leukemia 2013; 27: 610–618.

    CAS  PubMed  Google Scholar 

  6. Bies J, Sramko M, Fares J, Rosu-Myles M, Zhang S, Koller R et al. Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia. Blood 2010; 116: 979–987.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Will B, Zhou L, Vogler TO, Ben-Neriah S, Schinke C, Tamari R et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood 2012; 120: 2076–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011; 25: 1153–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Solary E, Bernard OA, Tefferi A, Fuks F, Vainchenker W . Ten-eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia 2014; 28: 485–496.

    CAS  PubMed  Google Scholar 

  10. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013; 152: 1146–1159.

    CAS  PubMed  Google Scholar 

  12. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010; 468: 839–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 2010; 24: 1094–1096.

    CAS  PubMed  Google Scholar 

  14. Song SJ, Ito K, Ala U, Kats L, Webster K, Sun SM et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell 2013; 13: 87–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alharbi RA, Pettengell R, Pandha HS, Morgan R . The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 2013; 27: 1000–1008.

    CAS  PubMed  Google Scholar 

  16. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    CAS  PubMed  Google Scholar 

  17. Score J, Hidalgo-Curtis C, Jones AV, Winkelmann N, Skinner A, Ward D et al. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 2012; 119: 1208–1213.

    Article  CAS  PubMed  Google Scholar 

  18. Ueda T, Sanada M, Matsui H, Yamasaki N, Honda ZI, Shih LY et al. EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. Leukemia 2012; 26: 2557–2560.

    CAS  PubMed  Google Scholar 

  19. Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301–1309.

    CAS  PubMed  Google Scholar 

  20. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 2011; 118: 3932–3941.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39: 237–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Radulovic V, de Haan G, Klauke K . Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia 2013; 27: 523–533.

    CAS  PubMed  Google Scholar 

  23. Mihara K, Chowdhury M, Nakaju N, Hidani S, Ihara A, Hyodo H et al. Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood 2006; 107: 305–308.

    CAS  PubMed  Google Scholar 

  24. Abdel-Wahab O, Dey A . The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia 2012; 27: 10–15.

    PubMed  Google Scholar 

  25. Boultwood J, Perry J, Pellagatti A, Fernandez-Mercado M, Fernandez-Santamaria C, Calasanz MJ et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 2010; 24: 1062–1065.

    CAS  PubMed  Google Scholar 

  26. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 2012; 22: 180–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez C, Martinez-Calle N, Martin-Subero JI, Segura V, Delabesse E, Fernandez-Mercado M et al. TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia. PLoS One 2012; 7: e31605.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamazaki J, Taby R, Vasanthakumar A, Macrae T, Ostler KR, Shen L et al. Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia. Epigenetics 2012; 7: 201–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Asmar F, Punj V, Christensen J, Pedersen MT, Pedersen A, Nielsen AB et al. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica 2013; e-pub ahead of print 12 July 2013.

  30. Guilhamon P, Eskandarpour M, Halai D, Wilson GA, Feber A, Teschendorff AE et al. Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nat Commun 2013; 4: 2166.

    PubMed  Google Scholar 

  31. Bocker MT, Tuorto F, Raddatz G, Musch T, Yang FC, Xu M et al. Hydroxylation of 5-methylcytosine by TET2 maintains the active state of the mammalian HOXA cluster. Nat Commun 2012; 3: 818.

    PubMed  Google Scholar 

  32. Chen Q, Chen Y, Bian C, Fujiki R, Yu X . TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 2013; 493: 561–564.

    CAS  PubMed  Google Scholar 

  33. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483: 474–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339: 1621–1625.

    CAS  PubMed  Google Scholar 

  35. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet 2013; 45: 1232–1237.

    CAS  PubMed  Google Scholar 

  36. Panigrahi AK, Pati D . Higher-order orchestration of hematopoiesis: is cohesin a new player? Exp Hematol 2012; 40: 967–973.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Herold M, Bartkuhn M, Renkawitz R . CTCF: insights into insulator function during development. Development 2012; 139: 1045–1057.

    CAS  PubMed  Google Scholar 

  38. De S, Shaknovich R, Riester M, Elemento O, Geng H, Kormaksson M et al. Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet 2013; 9: e1003137.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gibbons RJ, Pellagatti A, Garrick D, Wood WG, Malik N, Ayyub H et al. Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the alpha-thalassemia myelodysplasia syndrome (ATMDS). Nat Genet 2003; 34: 446–449.

    CAS  PubMed  Google Scholar 

  40. Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood 2013; 122: 3169–3177.

    CAS  PubMed  Google Scholar 

  41. Rhyasen GW, Starczynowski DT . Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 2011; 26: 13–22.

    PubMed  Google Scholar 

  42. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113: 6411–6418.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Santamaria C, Muntion S, Roson B, Blanco B, Lopez-Villar O, Carrancio S et al. Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients. Haematologica 2012; 97: 1218–1224.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 2013; 152: 727–742.

    CAS  PubMed  Google Scholar 

  46. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 2008; 451: 202–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sopher BL, Ladd PD, Pineda VV, Libby RT, Sunkin SM, Hurley JB et al. CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA. Neuron 2011; 70: 1071–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Visconte V, Makishima H, Maciejewski JP, Tiu RV . Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia 2012; 26: 2447–2454.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gomez Acuna LI, Fiszbein A, Allo M, Schor IE, Kornblihtt AR . Connections between chromatin signatures and splicing. Wiley Interdiscip Rev RNA 2013; 4: 77–91.

    CAS  PubMed  Google Scholar 

  51. Shah MY, Vasanthakumar A, Barnes NY, Figueroa ME, Kamp A, Hendrick C et al. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res 2010; 70: 5840–5850.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu F, Zhao X, Perna F, Wang L, Koppikar P, Abdel-Wahab O et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 2011; 19: 283–294.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Timp W, Feinberg AP . Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 2013; 13: 497–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA . Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 2007; 5: e201.

    PubMed  PubMed Central  Google Scholar 

  56. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F . Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 2011; 117: e182–e189.

    CAS  PubMed  Google Scholar 

  57. Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013; 12: 413–425.

    CAS  PubMed  Google Scholar 

  58. Kim M, Kook H, Park HJ, Ahn HS, Lee KC, Lee KS et al. Quantitative comparison of CDKN2B methylation in pediatric and adult myelodysplastic syndromes. Acta Haematol 2013; 130: 115–121.

    CAS  PubMed  Google Scholar 

  59. Wei Y, Dimicoli S, Bueso-Ramos C, Chen R, Yang H, Neuberg D et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia 2013; 27: 1832–1840.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hasselbalch HC . Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 2012; 119: 3219–3225.

    CAS  PubMed  Google Scholar 

  61. Ye Y, McDevitt MA, Guo M, Zhang W, Galm O, Gore SD et al. Progressive chromatin repression and promoter methylation of CTNNA1 associated with advanced myeloid malignancies. Cancer Res 2009; 69: 8482–8490.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Aziz A, Baxter EJ, Edwards C, Cheong CY, Ito M, Bench A et al. Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions. J Clin Invest 2013; 123: 2169–2182.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Venkatraman A, He XC, Thorvaldsen JL, Sugimura R, Perry JM, Tao F et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 2013; 500: 345–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2012; 44: 23–31.

    CAS  Google Scholar 

  65. Herrera-Merchan A, Arranz L, Ligos JM, de Molina A, Dominguez O, Gonzalez S . Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease. Nat Commun 2012; 3: 623.

    CAS  PubMed  Google Scholar 

  66. Fisher CL, Pineault N, Brookes C, Helgason CD, Ohta H, Bodner C et al. Loss-of-function additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood 2010; 115: 38–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Abdel-Wahab O, Gao J, Adli M, Chung YR, Koche R, Shih AH et al. Conditional deletion of Asxl1 results in myelodysplasia. ASH Annual Meeting Abstracts. 2012; 120: 308.

    Google Scholar 

  68. Itzykson R, Solary E . An evolutionary perspective on chronic myelomonocytic leukemia. Leukemia 2013; 27: 1441–1450.

    CAS  PubMed  Google Scholar 

  69. Theilgaard-Monch K, Boultwood J, Ferrari S, Giannopoulos K, Hernandez-Rivas JM, Kohlmann A et al. Gene expression profiling in MDS and AML: potential and future avenues. Leukemia 2011; 25: 909–920.

    CAS  PubMed  Google Scholar 

  70. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ . Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 2012; 26: 414–421.

    CAS  PubMed  Google Scholar 

  71. Lane SW, Sykes SM, Al-Shahrour F, Shterental S, Paktinat M, Lo Celso C et al. The Apc(min) mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood 2010; 115: 3489–3497.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hino S, Kishida S, Michiue T, Fukui A, Sakamoto I, Takada S et al. Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein. Mol Cell Biol 2001; 21: 330–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 2013; 153: 678–691.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH . Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 2012; 26: 344–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cheng JX, Anastasi J, Watanabe K, Kleinbrink EL, Grimley E, Knibbs R et al. Genome-wide profiling reveals epigenetic inactivation of the PU.1 pathway by histone H3 lysine 27 trimethylation in cytogenetically normal myelodysplastic syndrome. Leukemia 2013; 27: 1291–1300.

    CAS  PubMed  Google Scholar 

  76. Davies C, Yip BH, Fernandez-Mercado M, Woll PS, Agirre X, Prosper F et al. Silencing of ASXL1 impairs the granulomonocytic lineage potential of human CD34(+) progenitor cells. Br J Haematol 2013; 160: 842–850.

    CAS  PubMed  Google Scholar 

  77. Hopfer O, Nolte F, Mossner M, Komor M, Kmetsch A, Benslasfer O et al. Epigenetic dysregulation of GATA1 is involved in myelodysplastic syndromes dyserythropoiesis. Eur J Haematol 2012; 88: 144–153.

    CAS  PubMed  Google Scholar 

  78. Raval A, Sridhar KJ, Patel S, Turnbull BB, Greenberg PL, Mitchell BS . Reduced rRNA expression and increased rDNA promoter methylation in CD34+ cells of patients with myelodysplastic syndromes. Blood 2012; 120: 4812–4818.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wong JJ, Ritchie W, Ebner OA, Selbach M, Wong JW, Huang Y et al. Orchestrated intron retention regulates normal granulocyte differentiation. Cell 2013; 154: 583–595.

    CAS  PubMed  Google Scholar 

  80. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB, Burkholder WF et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 2013; 341: 1110–1112.

    CAS  PubMed  Google Scholar 

  82. Estey EH . Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia 2013; 27: 1803–1812.

    CAS  PubMed  Google Scholar 

  83. Thepot S, Lainey E, Cluzeau T, Sebert M, Leroy C, Ades L et al. Hypomethylating agents reactivate FOXO3A in acute myeloid leukemia. Cell Cycle 2011; 10: 2323–2330.

    CAS  PubMed  Google Scholar 

  84. Klco JM, Spencer DH, Lamprecht TL, Sarkaria SM, Wylie T, Magrini V et al. Genomic impact of transient low-dose decitabine treatment on primary AML cells. Blood 2013; 121: 1633–1643.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pandiyan K, You JS, Yang X, Dai C, Zhou XJ, Baylin SB et al. Functional DNA demethylation is accompanied by chromatin accessibility. Nucleic Acids Res 2013; 41: 3973–3985.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 2009; 23: 1019–1028.

    CAS  PubMed  Google Scholar 

  87. Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N et al. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 2010; 5: e9001.

    PubMed  PubMed Central  Google Scholar 

  88. Aimiuwu J, Wang H, Chen P, Xie Z, Wang J, Liu S et al. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood 2012; 119: 5229–5238.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Khoddami V, Cairns BR . Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 2013; 31: 458–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gore SD, Fenaux P, Santini V, Bennett JM, Silverman LR, Seymour JF et al. A multivariate analysis of the relationship between response and survival among patients with higher-risk myelodysplastic syndromes treated within azacitidine or conventional care regimens in the randomized AZA-001 trial. Haematologica 2013; 98: 1067–1072.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sebert M, Komrokji RS, Sekeres MA, Prebet T, Cluzeau T, Santini V et al. Impact of cytogenetics and cytogenetic response on outcome in myelodysplastic syndromes (MDS) treated with azacitidine (AZA). A collaborative study in 878 patients.. ASH Annual Meeting Abstracts 2013; abstract #389.

  92. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C et al. Clonal architecture of chronic myelomonocytic leukemias. Blood 2013; 121: 2186–2198.

    CAS  PubMed  Google Scholar 

  93. Craddock C, Quek L, Goardon N, Freeman S, Siddique S, Raghavan M et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia 2012; 27: 1028–1036.

    PubMed  Google Scholar 

  94. Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21: 430–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N . Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 2007; 109: 3570–3578.

    CAS  PubMed  Google Scholar 

  96. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138–152.

    CAS  PubMed  Google Scholar 

  97. Negrotto S, Ng KP, Jankowska AM, Bodo J, Gopalan B, Guinta K et al. CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors. Leukemia 2012; 26: 244–254.

    CAS  PubMed  Google Scholar 

  98. Ng KP, Ebrahem Q, Negrotto S, Mahfouz RZ, Link KA, Hu Z et al. p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia 2011; 25: 1739–1750.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Curik N, Burda P, Vargova K, Pospisil V, Belickova M, Vlckova P et al. 5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia 2012; 26: 1804–1811.

    CAS  PubMed  Google Scholar 

  100. Lubbert M, Daskalakis M, Kunzmann R, Engelhardt M, Guo Y, Wijermans P . Nonclonal neutrophil responses after successful treatment of myelodysplasia with low-dose 5-aza-2'-deoxycytidine (decitabine). Leuk Res 2004; 28: 1267–1271.

    CAS  PubMed  Google Scholar 

  101. Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G et al. Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 2010; 116: 1908–1918.

    CAS  PubMed  Google Scholar 

  102. Choi J, Ritchey J, Prior JL, Holt M, Shannon WD, Deych E et al. In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood 2010; 116: 129–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Goodyear OC, Dennis M, Jilani NY, Loke J, Siddique S, Ryan G et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood 2012; 119: 3361–3369.

    CAS  PubMed  Google Scholar 

  104. Schroeder T, Frobel J, Cadeddu RP, Czibere A, Dienst A, Platzbecker U et al. Salvage therapy with azacitidine increases regulatory T cells in peripheral blood of patients with AML or MDS and early relapse after allogeneic blood stem cell transplantation. Leukemia 2013; 27: 1910–1913.

    CAS  PubMed  Google Scholar 

  105. Costantini B, Kordasti S, Kulasekararaj AG, Jiang J, Seidl T, Perez Abellan P et al. The effects of 5-azacytidine on the function and number of regulatory T-cells and T-effectors in myelodysplastic syndrome. Haematologica 2012; 98: 1196–1205.

    PubMed  Google Scholar 

  106. Hu Y, Cui Q, Gu Y, Sheng L, Wu K, Shi J et al. Decitabine facilitates the generation and immunosuppressive function of regulatory gammadeltaT cells derived from human peripheral blood mononuclear cells. Leukemia 2013; 27: 1580–1585.

    CAS  PubMed  Google Scholar 

  107. Schmiedel BJ, Arelin V, Gruenebach F, Krusch M, Schmidt SM, Salih HR . Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int J Cancer 2011; 128: 2911–2922.

    CAS  PubMed  Google Scholar 

  108. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 2011; 25: 1147–1152.

    CAS  PubMed  Google Scholar 

  109. Voso MT, Fabiani E, Piciocchi A, Matteucci C, Brandimarte L, Finelli C et al. Role of BCL2L10 methylation and TET2 mutations in higher risk myelodysplastic syndromes treated with 5-azacytidine. Leukemia 2011; 25: 1910–1913.

    CAS  PubMed  Google Scholar 

  110. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia 2010; 28: 78–87.

    Google Scholar 

  111. Metzeler KH, Walker A, Geyer S, Garzon R, Klisovic RB, Bloomfield CD et al. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia 2012; 26: 1106–1107.

    CAS  PubMed  Google Scholar 

  112. Raj K, John A, Ho A, Chronis C, Khan S, Samuel J et al. CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 2007; 21: 1937–1944.

    CAS  PubMed  Google Scholar 

  113. Ettou S, Audureau E, Humbrecht C, Benet B, Jammes H, Clozel T et al. Fas expression at diagnosis as a biomarker of azacitidine activity in high-risk MDS and secondary AML. Leukemia 2012; 26: 2297–2299.

    CAS  PubMed  Google Scholar 

  114. Follo MY, Finelli C, Mongiorgi S, Clissa C, Bosi C, Testoni N et al. Reduction of phosphoinositide-phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. Proc Natl Acad Sci USA. 2009; 106: 16811–16816.

    PubMed  PubMed Central  Google Scholar 

  115. Shen L, Kantarjian H, Guo Y, Lin E, Shan J, Huang X et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 2010; 28: 605–613.

    CAS  PubMed  Google Scholar 

  116. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA. 2010; 107: 7473–7478.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Cluzeau T, Robert G, Mounier N, Karsenti JM, Dufies M, Puissant A et al. BCL2L10 is a predictive factor for resistance to azacitidine in MDS and AML patients. Oncotarget 2012; 3: 490–501.

    PubMed  PubMed Central  Google Scholar 

  118. Fandy TE, Herman JG, Kerns P, Jiemjit A, Sugar EA, Choi SH et al. Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 2009; 114: 2764–2773.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Qin T, Castoro R, El Ahdab S, Jelinek J, Wang X, Si J et al. Mechanisms of resistance to decitabine in the myelodysplastic syndrome. PLoS One 2011; 6: e23372.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Blum W, Schwind S, Tarighat SS, Geyer S, Eisfeld AK, Whitman S et al. Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood 2012; 119: 6025–6031.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mims A, AR Walker, Huang X, Sun J, Wang H, Santhanam R et al. Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia 2013; 27: 871–878.

    CAS  PubMed  Google Scholar 

  122. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21: 103–107.

    CAS  PubMed  Google Scholar 

  123. Platzbecker U, Germing U . Combination of azacitidine and lenalidomide in myelodysplastic syndromes or acute myeloid leukemia-a wise liaison? Leukemia 2013; 27: 1813–1819.

    CAS  PubMed  Google Scholar 

  124. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M . Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012; 11: 384–400.

    CAS  PubMed  Google Scholar 

  125. de Boer J, Walf-Vorderwulbecke V, Williams O . In focus: MLL-rearranged leukemia. Leukemia 2013; 27: 1224–1228.

    CAS  PubMed  Google Scholar 

  126. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet 2011; 43: 768–775.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the many original contributions in the field that could not be cited due to manuscript limitations. We are indebted to Eric Solary for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Fenaux.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itzykson, R., Fenaux, P. Epigenetics of myelodysplastic syndromes. Leukemia 28, 497–506 (2014). https://doi.org/10.1038/leu.2013.343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.343

Keywords

This article is cited by

Search

Quick links