Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

CBL-B is required for leukemogenesis mediated by BCR-ABL through negative regulation of bone marrow homing

Abstract

BCR-ABL induces chronic myeloid leukemia (CML) through the aberrant regulation of multiple signaling substrates. Previous research has shown that BCR-ABL mediates down-modulation of CBL-B protein levels. A murine bone marrow transplantation (BMT) study was performed to assess the contribution of Cbl-b to BCR-ABL-induced disease. The predominant phenotype in the Cbl-b(−/−) recipients was a CML-like myeloproliferative disease (MPD) similar to that observed in the wild-type animals, but with a longer latency, diminished circulating leukocyte numbers and reduced spleen weights. Despite the decreased leukemic burden in comparison to their wild-type counterparts, the Cbl-b(−/−) animals displayed enhanced numbers of Gr-1+/Mac-1+ spleen cells and neutrophilia. On the basis of prior evidence of CBL-B-dependent motility toward SDF-1α, we hypothesized that Cbl-b deficiency might impair bone marrow localization during transplantation. Homing experiments showed reduced migration of Cbl-b(−/−) cells to the bone marrow. Intrafemoral transplantation of BCR-ABL-transduced Cbl-b(−/−) cells revealed equivalent latency of disease development to the wild-type transplants, supporting the conclusion that Cbl-b deficiency diminishes homing of leukemic cells to the bone marrow, and perturbs the proliferation of BCR-ABL-expressing malignant clones during CML development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ren R . Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5: 172–183.

    Article  CAS  PubMed  Google Scholar 

  2. Sawyers CL . Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  3. Daley GQ, Baltimore D . Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 1988; 85: 9312–9316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hariharan IK, Adams JM, Cory S . bcr-abl oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res 1988; 3: 387–399.

    CAS  PubMed  Google Scholar 

  5. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG . BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 1994; 83: 1179–1187.

    CAS  PubMed  Google Scholar 

  6. Bedi A, Zehnbauer B, Barber J, Sharkis S, Jones R . Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994; 83: 2038–2044.

    CAS  PubMed  Google Scholar 

  7. Kabarowski JH, Allen PB, Wiedemann LM . A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells. EMBO J 1994; 13: 5887–5895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verfaillie CM, McCarthy JB, McGlave PB . Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia. Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components laminin and collagen type IV. J Clin Invest 1992; 90: 1232–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF . Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 1987; 328: 342–344.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao RC, Jiang Y, Verfaillie CM . A model of human p210(bcr/ABL)-mediated chronic myelogenous leukemia by transduction of primary normal human CD34(+) cells with a BCR/ABL-containing retroviral vector. Blood 2001; 97: 2406–2412.

    Article  CAS  PubMed  Google Scholar 

  11. Peled A, Hardan I, Trakhtenbrot L, Gur E, Magid M, Darash-Yahana M et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 2002; 20: 259–266.

    Article  CAS  PubMed  Google Scholar 

  12. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  13. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N . Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA 1990; 87: 6649–6653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Konopka JB, Watanabe SM, Witte ON . An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 1984; 37: 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  15. Ilaria RL, Van Etten RA . The SH2 domain of P210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells. Blood 1995; 86: 3897–3904.

    PubMed  Google Scholar 

  16. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    Article  CAS  PubMed  Google Scholar 

  17. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995; 86: 726–736.

    CAS  PubMed  Google Scholar 

  18. Ilaria RL, Van Etten RA . P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996; 271: 31704–31710.

    Article  CAS  PubMed  Google Scholar 

  19. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL . Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996; 13: 247–254.

    CAS  PubMed  Google Scholar 

  20. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996; 183: 811–820.

    Article  CAS  PubMed  Google Scholar 

  21. Frank DA, Varticovski L . BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 1996; 10: 1724–1730.

    CAS  PubMed  Google Scholar 

  22. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL . The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA 1995; 92: 11746–11750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahlmann S, McLaughlin J, Afar DE, Mohr R, Kay RJ, Witte ON . Dissection of signaling pathways and cloning of new signal transducers in tyrosine kinase-induced pathways by genetic selection. Leukemia 1998; 12: 1858–1865.

    Article  CAS  PubMed  Google Scholar 

  24. Skorski T, Wlodarski P, Daheron L, Salomoni P, Nieborowska-Skorska M, Majewski M et al. BCR/ABL-mediated leukemogenesis requires the activity of the small GTP-binding protein Rac. Proc Natl Acad Sci USA 1998; 95: 11858–11862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994; 13: 764–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway. Oncogene 1996; 12: 839–846.

    CAS  PubMed  Google Scholar 

  27. Harrison-Findik D, Susa M, Varticovski L . Association of phosphatidylinositol 3-kinase with SHC in chronic myelogeneous leukemia cells. Oncogene 1995; 10: 1385–1391.

    CAS  PubMed  Google Scholar 

  28. Jain SK, Susa M, Keeler ML, Carlesso N, Druker B, Varticovski L . PI 3-kinase activation in BCR/abl-transformed hematopoietic cells does not require interaction of p85 SH2 domains with p210 BCR/abl. Blood 1996; 88: 1542–1550.

    CAS  PubMed  Google Scholar 

  29. ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J . Tyrosine phosphorylation of CRKL in Philadelphia+ leukemia. Blood 1994; 84: 1731–1736.

    CAS  PubMed  Google Scholar 

  30. de Jong R, ten Hoeve J, Heisterkamp N, Groffen J . Crkl is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia. J Biol Chem 1995; 270: 21468–21471.

    Article  CAS  PubMed  Google Scholar 

  31. Bhat A, Kolibaba K, Oda T, Ohno-Jones S, Heaney C, Druker BJ . Interactions of CBL with BCR-ABL and CRKL in BCR-ABL-transformed myeloid cells. J Biol Chem 1997; 272: 16170–16175.

    Article  CAS  PubMed  Google Scholar 

  32. Andoniou C, Thien C, Langdon W . Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J 1994; 13: 4515–4523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Langdon WY, Hartley JW, Klinken SP, Ruscetti SK, Morse HC . v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc Natl Acad Sci USA 1989; 86: 1168–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Naramura M, Kole HK, Hu RJ, Gu H . Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc Natl Acad Sci USA 1998; 95: 15547–15552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CB et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol 1998; 18: 4872–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bachmaier K, Krawczyk C, Kozieradzki I, Kong Y, Sasaki T, Oliveira-dos-Santos A et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 2000; 403: 211–216.

    Article  CAS  PubMed  Google Scholar 

  37. Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 2000; 403: 216–220.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt MH, Dikic I . The Cbl interactome and its functions. Nat Rev Mol Cell Biol 2005; 6: 907–918.

    Article  CAS  PubMed  Google Scholar 

  39. Okabe S, Tauchi T, Ohyashiki K, Broxmeyer HE . Stromal-cell-derived factor-1/CXCL12-induced chemotaxis of a T cell line involves intracellular signaling through Cbl and Cbl-b and their regulation by Src kinases and CD45. Blood Cells Mol Dis 2006; 36: 308–314.

    Article  CAS  PubMed  Google Scholar 

  40. Chernock RD, Cherla RP, Ganju RK . SHP2 and cbl participate in alpha-chemokine receptor CXCR4-mediated signaling pathways. Blood 2001; 97: 608–615.

    Article  CAS  PubMed  Google Scholar 

  41. Dinulescu DM, Wood LJ, Shen L, Loriaux M, Corless CL, Gross AW et al. c-CBL is not required for leukemia induction by Bcr-Abl in mice. Oncogene 2003; 22: 8852–8860.

    Article  CAS  PubMed  Google Scholar 

  42. Bustelo XR, Crespo P, Lopez-Barahona M, Gutkind JS, Barbacid M . Cbl-b, a member of the Sli-1/c-Cbl protein family, inhibits Vav-mediated c-Jun N-terminal kinase activation. Oncogene 1997; 15: 2511–2520.

    Article  CAS  PubMed  Google Scholar 

  43. Sattler M, Pride YB, Quinnan LR, Verma S, Malouf NA, Husson H et al. Differential expression and signaling of CBL and CBL-B in BCR/ABL transformed cells. Oncogene 2002; 21: 1423–1433.

    Article  CAS  PubMed  Google Scholar 

  44. Nguyen MH, Ho JM, Beattie BK, Barber DL . TEL-JAK2 mediates constitutive activation of the phosphatidylinositol 3'-kinase/protein kinase B signaling pathway. J Biol Chem 2001; 276: 32704–32713.

    Article  CAS  PubMed  Google Scholar 

  45. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  46. Ho JM, Nguyen MH, Dierov JK, Badger KM, Beattie BK, Tartaro P et al. TEL-JAK2 constitutively activates the extracellular signal-regulated kinase (ERK), stress-activated protein/Jun kinase (SAPK/JNK), and p38 signaling pathways. Blood 2002; 100: 1438–1448.

    CAS  PubMed  Google Scholar 

  47. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mazurier F, Doedens M, Gan O, Dick J . Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9: 959–963.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang X, Ren R . Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–3840.

    CAS  PubMed  Google Scholar 

  50. Pelletier SD, Hong DS, Hu Y, Liu Y, Li S . Lack of the adhesion molecules P-selectin and intercellular adhesion molecule-1 accelerate the development of BCR/ABL-induced chronic myeloid leukemia-like myeloproliferative disease in mice. Blood 2004; 104: 2163–2171.

    Article  CAS  PubMed  Google Scholar 

  51. Griswold IJ, MacPartlin M, Bumm T, Goss VL, O'Hare T, Lee KA et al. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol 2006; 26: 6082–6093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C . Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci USA 1999; 96: 12804–12809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA . Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 2001; 97: 1442–1450.

    Article  CAS  PubMed  Google Scholar 

  54. Wong S, McLaughlin J, Cheng D, Shannon K, Robb L, Witte ON . IL-3 receptor signaling is dispensable for BCR-ABL-induced myeloproliferative disease. Proc Natl Acad Sci USA 2003; 100: 11630–11635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ et al. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 2007; 110: 1022–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sargin B, Choudhary C, Crosetto N, Schmidt MH, Grundler R, Rensinghoff M et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 2007; 110: 1004–1012.

    Article  CAS  PubMed  Google Scholar 

  57. Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2008; 68: 10349–10357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rathinam C, Thien CB, Flavell RA, Langdon WY . Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell 2010; 18: 341–352.

    Article  CAS  PubMed  Google Scholar 

  59. Naramura M, Nandwani N, Gu H, Band V, Band H . Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in hematopoietic stem cells. Proc Natl Acad Sci USA 2010; 107: 16274–16279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 2002; 99: 2957–2968.

    Article  CAS  PubMed  Google Scholar 

  61. Million RP, Van Etten RA . The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000; 96: 664–670.

    CAS  PubMed  Google Scholar 

  62. Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R . The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21: 840–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Skorski T, Nieborowska-Skorska M, Wlodarski P, Wasik M, Trotta R, Kanakaraj P et al. The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in vivo: role in adhesion, invasion, and homing. Blood 1998; 91: 406–418.

    CAS  PubMed  Google Scholar 

  64. Fang D, Liu YC . Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2001; 2: 870–875.

    Article  CAS  PubMed  Google Scholar 

  65. Krause DS, Lazarides K, von Andrian UH, Van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  66. Choi EY, Orlova VV, Fagerholm SC, Nurmi SM, Zhang L, Ballantyne CM et al. Regulation of LFA-1-dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteins. Blood 2008; 111: 3607–3614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gold MR, Ingham RJ, McLeod SJ, Christian SL, Scheid MP, Duronio V et al. Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase. Immunol Rev 2000; 176: 47–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Canadian Institutes of Health Research (FRN-42428). We thank members of the Barber lab for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Barber.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badger-Brown, K., Gillis, L., Bailey, M. et al. CBL-B is required for leukemogenesis mediated by BCR-ABL through negative regulation of bone marrow homing. Leukemia 27, 1146–1154 (2013). https://doi.org/10.1038/leu.2012.331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.331

Keywords

This article is cited by

Search

Quick links